Skip to main content

Advertisement

Log in

A critical review on nanoplastics and its future perspectives in the marine environment

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nanoplastics (plastic particles smaller than 1 μm) are the least-known type of marine litter. Nanoplastics (NPs) have attracted much interest in recent years because of their prevalence in the environment and the potential harm they can cause to living organisms. This article focuses on understanding NPs and their fate in the marine environment. Sources of NPs have been identified, including accidental release from products or through nano-fragmentation of larger plastic debris. As NPs have a high surface area, they may retain harmful compounds. The presence of harmful additives in NPs poses unique practical challenges for studies on their toxicity. In this review, several methods specifically adapted for the physical and chemical characterization of NPs have been discussed. Furthermore, the review provides an overview of the translocation and absorption of NPs into organisms, along with an evaluation of the release of potential toxins from NPs. Further, we have provided an overview about the existing methods suggested for the possible degradation of these NPs. We conclude that the hazards of NPs are plausible but unknown, necessitating a thorough examination of NPs’ sources, fate, and effects to better mitigate and spread awareness about this emerging contaminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  • Aboulkas, A., Harfi, E., & K., El Bouadili., A. (2010). Thermal degradation behaviors of polyethylene and polypropylene. Part I:Pyrolysis kinetics and mechanisms. Energy Conversion and Management, 51, 1363–1369.

    CAS  Google Scholar 

  • Alexy, P., Anklam, E., Emans, T., Furfari, A., Galgani, F., Hanke, G., Koelmans, A., Pant, R., Saveyn, H., & Sokull Kluettgen, B. (2020). Managing the analytical challenges related to micro- and nanoplastics in the environment and food:Filling the knowledge gaps. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 37, 1–10.

    CAS  Google Scholar 

  • Ali, I., Mukhtar, S. D., Ali, H. S., Scotti, M. T., & Scotti, L. (2020). Advances in nanoparticles as anticancer drug delivery vector: Need of this century. Current Pharmaceutical Design, 26, 1637–1649.

    CAS  Google Scholar 

  • Ali, S., Rehman, A., Hussain, S. Z., & Bukhari, D. A. (2023). Characterization of plastic degrading bacteria isolated from sewage wastewater. Saudi Journal of Biological Sciences, 30(5), 103628.

    CAS  Google Scholar 

  • Allen, S., Allen, D., Moss, K., Roux, G. L., Phoenix, V. R., & Sonke, J. E. (2020). Examination of the ocean as a source for atmospheric microplastics. PLoS One, 15, e0232746.

    CAS  Google Scholar 

  • Alprol, A. E., Gaballah, M. S., & Hassaan, M. A. (2021). Micro and Nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Regional Studies in Marine Science, 42, 101625.

    Google Scholar 

  • Al-Sid-Cheikh, M., Rowland, S. J., Stevenson, K., Rouleau, C., Henry, T. B., & Thompson, R. C. (2018). Uptake, whole-body distribution, and depuration of Nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environmental Science & Technology, 52, 14480–14486.

    CAS  Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    CAS  Google Scholar 

  • Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1977–1984.

    CAS  Google Scholar 

  • Arini, A., Muller, S., Coma, V., Grau, E., Sandre, O., & Baudrimont, M. (2023). Origin, exposure routes and xenobiotics impart nanoplastics with toxic effects on freshwater bivalves. Environmental Science: Nano, 10(5), 1352–1371.

    CAS  Google Scholar 

  • Astner, A. F., Hayes, D. G., O'Neill, H., Evans, B. R., Pingali, S. V., Urban, V. S., & Young., T.M. (2019). Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. Science of the Total Environment, 685, 1097–1106.

    CAS  Google Scholar 

  • Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment:A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176.

    CAS  Google Scholar 

  • Azizi, S.M.M., Haffiez, N., Zakaria, B.S., Elbeshbishy, E., Dhar, B.R. (2023). Nano-and microplastics as carriers for antibiotics and antibiotic resistance genes. Current developments in biotechnology and bioengineering, 361-385. Elsevier.

  • Balbi, T., Camisassi, G., Montagna, M., Fabbri, R., Franzellitti, S., Carbone, C., Dawson, K., & Canesi, L. (2017). Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation. Chemosphere, 186, 1–9.

    CAS  Google Scholar 

  • Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1526), 1985–1998.

    CAS  Google Scholar 

  • Baudrimont, M., Arini, A., Guegan, C., Venel, Z., Gigault, J., Pedrono, B., Prunier, J., Maurice, L., Ter Halle, A., & Feurtet-Mazel, A. (2020). Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves). Environmental Science and Pollution Research International, 27, 3746–3755.

    CAS  Google Scholar 

  • Bergami, E., Bocci, E., Vannuccini, M. L., Monopoli, M., Salvati, A., Dawson, K. A., & Corsi, I. (2016). Nano-sized polystyrene affects feeding, behaviour and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 123, 18–25.

    CAS  Google Scholar 

  • Bergami, E., Pugnalini, S., Vannuccini, M. L., Manfra, L., Faleri, C., Savorelli, F., Dawson, K. A., & Corsi, I. (2017). Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology, 189, 159–169.

    CAS  Google Scholar 

  • Bessa, F., Barría, P., Neto, J. M., Frias, J. P. G. L., Otero, V., Sobral, P., & Marques, J. C. (2018). Occurrence of microplastics in commercial fish from a natural estuarine environment. Marine Pollution Bulletin, 128, 575e584.

    Google Scholar 

  • Besseling, E., Wang, B., Lurling, M., & Koelmans, A. A. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48, 12336–12343.

    CAS  Google Scholar 

  • Beyer, D., Eckerle, P., Cortes, H., Engewald, W., & Dettmer, K. (2005). Development and applications of an automated in-column pyrolysis gas chromatography mass spectrometry system. Chromatographia, 62, 417–422.

    CAS  Google Scholar 

  • Bhargava, S., Lee, S. S. C., Ying, L. S. M., Neo, M. L., Teo, S. L. M., & Valiyaveettil, S. (2018). Fate of Nanoplastics in Marine Larvae:A Case Study Using Barnacles., Amphibalanus amphitrite. ACS Sustainable Chemistry & Engineering, 6, 6932–6940.

    CAS  Google Scholar 

  • Bhat, M. A., Gedik, K., & Gaga, E. O. (2023). Atmospheric micro (nano) plastics: Future growing concerns for human health. Air Quality, Atmosphere and Health, 16(2), 233–262.

    CAS  Google Scholar 

  • Bhattacharjee, S., Ershov, D., Islam, M. A., Kampfer, A. M., Maslowska, K. A., van der Gucht, J., Alink, G. M., Marcelis, A. T. M., Zuilhof, H., & Rietjens, I. M. C. M. (2014). Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Advances, 4, 19321–19330.

    CAS  Google Scholar 

  • Bhattacharya, P., Lin, S., Turner, J. P., & Ke, P. C. (2010). Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. Journal of Physical Chemistry C, 114(39), 16556–16561.

    CAS  Google Scholar 

  • Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the Air & Waste Management Association (1995), 55, 708–746.

    CAS  Google Scholar 

  • Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. Iucn Gland.

    Google Scholar 

  • Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released Micro- and Nanoplastics in the human food production chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49, 8932–8947.

    CAS  Google Scholar 

  • Boyle, K., & Örmeci, B. (2020). Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water, 12(9), 2633.

    Google Scholar 

  • Bradney, L., Wijesekara, H., Palansooriya, K. N., Obadamudalige, N., Bolan, N. S., Ok, Y. S., Rinklebe, J., Kim, K. H., & Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937.

    CAS  Google Scholar 

  • Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science, 368, 1257–1260.

    CAS  Google Scholar 

  • Brandts, I., Teles, M., Tvarijonaviciute, A., Pereira, M. L., Martins, M. A., Tort, L., & Oliveira, M. (2018). Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax. Genomics, 110, 435–441.

    CAS  Google Scholar 

  • Bratovcic, A. (2019). Degradation of micro-and nano-plastics by photocatalytic methods. Journal of Nanoscience and Nanotechnology Applied, 3, 206.

    Google Scholar 

  • Brun, N. R., van Hage, P., Hunting, E. R., Haramis, A. G., Vink, S. C., Vijver, M. G., Schaaf, M. J. M., & Tudorache, C. (2019). Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioral changes in larval zebrafish. Communications Biology, 2, 382.

    Google Scholar 

  • Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., Canonico, B., & Corsi, I. (2015). Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the haemocytes of the marine bivalve Mytilus. Marine Environmental Research, 111, 34–40.

    CAS  Google Scholar 

  • Carbery, M., O'Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409.

    Google Scholar 

  • Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.

    CAS  Google Scholar 

  • Cedervall, T., Hansson, L. A., Lard, M., Frohm, B., & Linse, S. (2012). Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 7, e32254.

    CAS  Google Scholar 

  • Chae, Y., Kim, D., Kim, S. W., & An, Y. J. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 8, 284.

    Google Scholar 

  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.

    CAS  Google Scholar 

  • Chang, X., Xue, Y., Li, J., Zou, L., & Tang, M. (2020). Potential health impact of environmental micro- and nanoplastics pollution. Journal of Applied Toxicology, 40, 4–15.

    CAS  Google Scholar 

  • Chen, C. L. (2015). Regulation and management of marine litter. In Marine anthropogenic litter (pp. 395–428). Springer.

    Google Scholar 

  • Chen, C. S., Anaya, J. M., Zhang, S., Spurgin, J., Chuang, C. Y., Xu, C., Miao, A. J., Chen, E. Y., Schwehr, K. A., Jiang, Y., Quigg, A., Santschi, P. H., & Chin, W. C. (2011). Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS One, 6, e21865.

    CAS  Google Scholar 

  • Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., & Hollert, H. (2017). Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Science of the Total Environment, 609, 1312–1321.

    CAS  Google Scholar 

  • Chen, Z., Shi, X., Zhang, J., Wu, L., Wei, W., & Ni, B. J. (2023). Nanoplastics are significantly different from microplastics in urban waters. Water Research, 19, 100169.

    CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Savage, N., Solomon, C. J., Cheng, Y. S., McMurry, P. H., Corey, L. M., Bruce, G. M., Pleus, R. C., Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the Air & Waste Management Association (1995), 55, 1411–1417.

    CAS  Google Scholar 

  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47, 6646–6655.

    CAS  Google Scholar 

  • Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment:A review. Marine Pollution Bulletin, 62, 2588–2597.

    CAS  Google Scholar 

  • Cooper, D. A., & Corcoran, P. L. (2010). Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine Pollution Bulletin, 60(5), 650–654.

    CAS  Google Scholar 

  • Correia, M., & Loeschner, K. (2018). Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering:Possibilities., challenges and analytical limitations. Analytical and Bioanalytical Chemistry, 410, 5603–5615.

    CAS  Google Scholar 

  • Cozar, A., Echevarria, F., Gonzalez-Gordillo, J. I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A. T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111, 10239–10244.

    CAS  Google Scholar 

  • Crawford, C. B., & Quinn, B. (2017). 1-The emergence of plastics. In C. B. Crawford, & B. Quinn (Eds.), Microplastic pollutants, 1–17.

  • da Costa, J. P., Reis, V., Paço, A., Costa, M., Duarte, A. C., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends in Analytical Chemistry, 111, 173–184.

    Google Scholar 

  • da Costa, J. P., Santos, P. S. M., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano)plastics in the environment - sources., fates and effects. Science of the Total Environment, 566-567, 15–26.

    Google Scholar 

  • Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7, 46687.

    Google Scholar 

  • Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44, 842–852.

    CAS  Google Scholar 

  • Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frere, L., Robbens, J., & Vethaak, A. D. (2015). Microplastic contamination in brown shrimp (Crangon crangon., Linnaeus 1758) from coastal waters of the southern North Sea and channel area. Marine Pollution Bulletin, 98, 179–187.

    CAS  Google Scholar 

  • do Sul, J. A. I., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364.

    Google Scholar 

  • Dominguez-Jaimes, L. P., Cedillo-Gonzalez, E. I., Luevano-Hipolito, E., Acuna-Bedoya, J. D., & Hernandez-Lopez, J. M. (2021). Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. Journal of Hazardous Materials, 413, 125452.

    CAS  Google Scholar 

  • Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: A case study in greater Paris. Environment and Chemistry, 12, 592–599.

    CAS  Google Scholar 

  • Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., & Laforsch, C. (2015). Beyond the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles. Environment and Chemistry, 12, 539–550.

    CAS  Google Scholar 

  • Dubaish, F., & Liebezeit, G. (2013). Suspended microplastics and black carbon particles in the jade system, southern north sea. Water, Air, & Soil Pollution, 224(2), 1352.

    Google Scholar 

  • Duemichen, E., Braun, U., Senz, R., Fabian, G., & Sturm, H. (2014). Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. Journal of Chromatography A, 1354, 117–128.

    CAS  Google Scholar 

  • Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 1–25.

    CAS  Google Scholar 

  • Dumichen, E., Eisentraut, P., Bannick, C. G., Barthel, A. K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572–584.

    Google Scholar 

  • Dumichen, E., Eisentraut, P., Celina, M., & Braun, U. (2019). Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products. Journal of Chromatography. A, 1592, 133–142.

    Google Scholar 

  • Ekvall, M. T., Lundqvist, M., Kelpsiene, E., Sileikis, E., Gunnarsson, S. B., & Cedervall, T. (2019). Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Advances, 1, 1055–1061.

    CAS  Google Scholar 

  • El Hadri, H., Gigault, J., Maxit, B., Grassl, B., & Reynaud, S. (2020). Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact, 17, 100206.

    Google Scholar 

  • Elert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., & Braun, U. (2017). Comparison of different methods for MP detection:What can we learn from them., and why asking the right question before measurements matters? Environmental Pollution, 231, 1256–1264.

    CAS  Google Scholar 

  • Enfrin, M., Dumee, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes - origin., impact and potential solutions. Water Research, 161, 621–638.

    CAS  Google Scholar 

  • Fadeel, B., Pietroiusti, A., & Shvedova, A. A. (2017). Adverse effects of engineered nanomaterials:Exposure., toxicology., and impact on human health. Academic Press.

    Google Scholar 

  • Feldman, D. (1984). Weathering of polymers. In A. Davis, & D. Sims (Eds.), London: Applied Science Publishers 1983 (pp. 294).

  • Filipe, V., Hawe, A., & Jiskoot, W. (2010). Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical Research, 27, 796–810.

    CAS  Google Scholar 

  • Fischer, M., & Scholz-Bottcher, B. M. (2017). Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry. Environmental Science & Technology, 51, 5052–5060.

    CAS  Google Scholar 

  • Frias, J., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147.

    CAS  Google Scholar 

  • Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science. Processes & Impacts, 15, 1949–1956.

    CAS  Google Scholar 

  • Galloway, T. S. (2015). Micro-and nano-plastics and human health., Marine anthropogenic litter (pp. 343–366). Springer.

    Google Scholar 

  • Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., Feng, S., & Wiesner, M. (2021). Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology, 16, 501–507.

    CAS  Google Scholar 

  • Gigault, J., El Hadri, H., Reynaud, S., Deniau, E., & Grassl, B. (2017). Asymmetrical flow field flow fractionation methods to characterize submicron particles:Application to carbon-based aggregates and nanoplastics. Analytical and Bioanalytical Chemistry, 409, 6761–6769.

    CAS  Google Scholar 

  • Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034.

    CAS  Google Scholar 

  • Gigault, J., Pedrono, B., Maxit, B., & Ter Halle, A. (2016). Marine plastic litter: The un analyzed nano-fraction. Environmental Science: Nano, 3, 346–350.

    CAS  Google Scholar 

  • Gillibert, R., Balakrishnan, G., Deshoules, Q., Tardivel, M., Magazzu, A., Donato, M. G., Marago, O. M., Lamy de La Chapelle, M., Colas, F., Lagarde, F., & Gucciardi, P. G. (2019). Raman tweezers for small microplastics and Nanoplastics identification in seawater. Environmental Science & Technology, 53, 9003–9013.

    CAS  Google Scholar 

  • Gniadek, M., & Dabrowska, A. (2019). The marine nano- and microplastics characterisation by SEM-EDX:The potential of the method in comparison with various physical and chemical approaches. Marine Pollution Bulletin, 148, 210–216.

    CAS  Google Scholar 

  • Gonz’alez-Fern’andez, D., C’ozar, A., Hanke, G., Viejo, J., Morales-Caselles, C., Bakiu, R., Barcel’o, D., Bessa, F., Bruge, A., Cabrera, M., Castro-Jim’enez, J., Constant, M., Crosti, R., Galletti, Y., Kideys, A. E., Machitadze, N., Pereira de Brito, J., Pogojeva, M., Ratola, N., et al. (2021). Floating macrolitter leaked from Europe into the ocean. Nat. Sustain, 4, 474–483.

    Google Scholar 

  • Gorman, M. (1993). Environmental hazards: Marine pollution. ABC-CLIO, Incorporated.

    Google Scholar 

  • Hermabessiere, L., Himber, C., Boricaud, B., Kazour, M., Amara, R., Cassone, AL., Laurentie, M., Paul-Pont, I., Soudant, P., Dehaut, A., Duflos, G. (2018). Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Analytical and Bioanalytical Chemistry, 410:6663–6676.

  • Hernandez, L. M., Yousefi, N., & Tufenkji, N. (2017). Are there Nanoplastics in your personal care products? Environmental Science & Technology Letters, 4, 280–285.

    CAS  Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060–3075.

    CAS  Google Scholar 

  • Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714–4721.

    CAS  Google Scholar 

  • Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., & Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the river Thames., UK - abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114, 218–226.

    CAS  Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    CAS  Google Scholar 

  • Huber, M. J., Ivleva, N. P., Booth, A. M., Beer, I., Bianchi, I., Drexel, R., & Caputo, F. (2023). Physicochemical characterization and quantification of nanoplastics: Applicability, limitations and complementarity of batch and fractionation methods. Analytical and Bioanalytical Chemistry, 1–25.

  • Huth, F., Govyadinov, A., Amarie, S., Nuansing, W., Keilmann, F., & Hillenbrand, R. (2012). Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 12, 3973–3978.

    CAS  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347, 768–771.

    CAS  Google Scholar 

  • Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier., microbiota and metabolism of mice. Science of the Total Environment, 649, 308–317.

    CAS  Google Scholar 

  • Junaid, M., Siddiqui, J. A., Liu, S., Lan, R., Abbas, Z., Chen, G., & Wang, J. (2023). Adverse multigeneration combined impacts of micro (nano) plastics and emerging pollutants in the aquatic environment. Science of the Total Environment, 163679.

  • Karami, A., Golieskardi, A., Choo, C. K., Larat, V., Galloway, T. S., & Salamatinia, B. (2017). The presence of microplastics in commercial salts from different countries. Scientific Reports, 7, 1–11.

    CAS  Google Scholar 

  • Karbalaei, S., Hanachi, P., Walker, T. R., & Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research International, 25, 36046–36063.

    CAS  Google Scholar 

  • Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114, 1697–1702.

    CAS  Google Scholar 

  • Kik, K., Bukowska, B., & Sicinska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution, 262, 114297.

    CAS  Google Scholar 

  • Kiran, B. R., Kopperi, H., & Venkata Mohan, S. (2022). Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Reviews in Environmental Science and Bio/Technology, 21(1), 169–203.

    Google Scholar 

  • Koelmans, A. A. (2019). Proxies for nanoplastic. Nature Nanotechnology, 14(4), 307–308.

    CAS  Google Scholar 

  • Koelmans, A. A., Besseling, E., & Shim, W. (2015). Nanoplastics in the aquatic environment. Critical review. Marine Anthropogenic Litter, 325–340.

  • Koelmans, A. A., Mohamed Nor, N. H., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410–422.

    CAS  Google Scholar 

  • Kogel, T., Bjoroy, O., Toto, B., Bienfait, A. M., & Sanden, M. (2020). Micro- and nanoplastic toxicity on aquatic life: Determining factors. Science of the Total Environment, 709, 136050.

    CAS  Google Scholar 

  • Kokesch-Himmelreich, J., Woltmann, B., Torger, B., Rohnke, M., Arnhold, S., Hempel, U., Muller, M., & Janek, J. (2015). Detection of organic nanoparticles in human bone marrow-derived stromal cells using ToF-SIMS and PCA. Analytical and Bioanalytical Chemistry, 407, 4555–4565.

    CAS  Google Scholar 

  • Kosuth, M., Mason, S. A., & Wattenberg, E. V. (2018). Anthropogenic contamination of tap water., beer., and sea salt. PLoS One, 13, e0194970.

    Google Scholar 

  • Kothawale, S. S., Kumar, L., & Singh, S. P. (2023). Role of organisms and their enzymes in the biodegradation of microplastics and nanoplastics: A review. Environmental Research, 116281.

  • Kumar, R., Manna, C., Padha, S., Verma, A., Sharma, P., Dhar, A., Ghosh, A., & Bhattacharya, P. (2022). Micro (nano) plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere, 298, 134267.

    CAS  Google Scholar 

  • Kurniawan, T. A., Haider, A., Ahmad, H. M., Mohyuddin, A., Aslam, H. M. U., Nadeem, S., Javed, M., Othman, M. H. D., Goh, H. H., & Chew, K. W. (2023). Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. Chemosphere, 138367.

  • Kusch, P. (2017). Application of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). In T. Rocha-Santos., A.D (Ed.), Characterization and Analysis of Microplastics (pp. 169–207). Elsevier.

    Google Scholar 

  • Kyrikou, L., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 15, 125–150.

    CAS  Google Scholar 

  • La Rocca, A., Di Liberto, G., Shayler, P. J., Parmenter, C. D. J., & Fay, M. W. (2014). Application of nanoparticle tracking analysis platform for the measurement of soot-in-oil agglomerates from automotive engines. Tribology International, 70, 142–147.

    Google Scholar 

  • Laborda, F., Bolea, E., Cepria, G., Gomez, M. T., Jimenez, M. S., Perez-Arantegui, J., & Castillo, J. R. (2016). Detection, characterization and quantification of inorganic engineered nanomaterials:A review of techniques and methodological approaches for the analysis of complex samples. Analytica Chimica Acta, 904, 10–32.

    CAS  Google Scholar 

  • Laganà, P., Caruso, G., Corsi, I., Bergami, E., Venuti, V., Majolino, D., La Ferla, R., Azzaro, M., & Cappello, S. (2019). Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). International Journal of Hygiene and Environmental Health, 222, 89–100.

    Google Scholar 

  • Lambert, S., Scherer, C., & Wagner, M. (2017). Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integrated Environmental Assessment and Management, 13(3), 470–475.

    CAS  Google Scholar 

  • Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265–268.

    CAS  Google Scholar 

  • Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1), 15611.

    CAS  Google Scholar 

  • Lee, S. Y., An, J., Kim, J., & Kwon, J. H. (2022). Enhanced settling of microplastics after biofilm development: A laboratory column study mimicking wastewater clarifiers. Environmental Pollution, 311, 119909.

    CAS  Google Scholar 

  • Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., Xie, B., Shi, H., & He, D. (2018). Polystyrene (nano) microplastics cause size-dependent neurotoxicity., oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science Nano, 5, 2009–2020.

    CAS  Google Scholar 

  • Leopold, K., Philippe, A., Worle, K., & Schaumann, G. E. (2016). Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. TrAC Trends in Analytical Chemistry, 84, 107–120.

    CAS  Google Scholar 

  • Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Brate, I. L. N., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., & Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental Pollution, 244, 522–533.

    CAS  Google Scholar 

  • Li, P., Li, Q., Hao, Z., Yu, S., & Liu, J. (2020). Analytical methods and environmental processes of nanoplastics. Journal of Environmental Sciences, 94, 88–99.

    CAS  Google Scholar 

  • Li, Q., Sun, H., Bai, Q., Li, P., Lai, Y., Yu, S., & Liu, J. (2023). Spatial distribution of polystyrene nanoplastics and small microplastics in the Bohai Sea, China. Science of the Total Environment, 881, 163222.

    CAS  Google Scholar 

  • Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment:A review of sources., occurrence and effects. Science of the Total Environment, 566, 333–349.

    Google Scholar 

  • Liebezeit, G., & Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 30, 2136–2140.

    CAS  Google Scholar 

  • Lima, J. Z., Cassaro, R., Ogura, A. P., & Vianna, M. M. G. R. (2023). A systematic review of the effects of microplastics and nanoplastics on the soil-plant system. Sustainable Production and Consumption.

  • Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32, 711–726.

    Google Scholar 

  • Liss, P. S. (2020). Microplastics: all up in the air?. In EGU General Assembly Conference Abstracts (p. 9684).

  • Liu, J., Ma, Y., Zhu, D., Xia, T., Qi, Y., Yao, Y., Guo, X., Ji, R., & Chen, W. (2018). Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environmental Science & Technology, 52(5), 2677–2685.

    CAS  Google Scholar 

  • Löder, M. G., & Gerdts, G. (2015). Methodology used for the detection and identification of microplastics—A critical appraisal. In Marine Anthropogenic Litter (pp. 201–227). Springer.

    Google Scholar 

  • Lonnstedt, O. M., & Eklov, P. (2016). Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science, 352, 1213–1216.

    Google Scholar 

  • Lorenz, C., Von Goetz, N., Scheringer, M., Wormuth, M., & Hungerbuhler, K. (2011). Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products. Nanotoxicology, 5, 12–29.

    CAS  Google Scholar 

  • Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A., & Bosker, T. (2017). A large-scale investigation of microplastic contamination:Abundance and characteristics of microplastics in European beach sediment. Marine Pollution Bulletin, 123, 219–226.

    CAS  Google Scholar 

  • Lu, S., Zhu, K., Song, W., Song, G., Chen, D., Hayat, T., Alharbi, N. S., Chen, C., & Sun, Y. (2018). Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Science of the Total Environment, 630, 951–959.

    CAS  Google Scholar 

  • Luo, T., Dai, X., Chen, Z., Wu, L., Wei, W., Xu, Q., & Ni, B. J. (2023). Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Water Research, 228, 119356.

    CAS  Google Scholar 

  • Ma, C., Chen, Q., Li, J., Li, B., Liang, W., Su, L., & Shi, H. (2021). Distribution and translocation of micro-and nanoplastics in fish. Critical Reviews in Toxicology, 51(9), 740–753.

    CAS  Google Scholar 

  • MacArthur, D. E., Waughray, D., & Stuchtey, M. R. (2016). The new plastics economy, rethinking the future of plastics. World Economic Forum.

    Google Scholar 

  • Magri, D., Sanchez-Moreno, P., Caputo, G., Gatto, F., Veronesi, M., Bardi, G., Catelani, T., Guarnieri, D., Athanassiou, A., Pompa, P. P., & Fragouli, D. (2018). Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants:Characterization and Toxicology Assessment. ACS Nano, 12, 7690–7700.

    CAS  Google Scholar 

  • Maheswaran, B., Al-Ansari, M., Al-Humaid, L., Raj, J. S., Kim, W., Karmegam, N., & Rafi, K. M. (2023). In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment. Chemosphere, 310, 136757.

    CAS  Google Scholar 

  • Malinconico, M. (2017). Soil degradable bioplastics for a sustainable modern agriculture (1st ed.). Springer.

    Google Scholar 

  • Mallikarjunachari, G., & Ghosh, P. (2016). Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques. Polymer, 90, 53–66.

    CAS  Google Scholar 

  • Mangalara, S. C. H., & Varughese, S. (2016). Green recycling approach to obtain Nano- and Microparticles from expanded polystyrene waste. ACS Sustainable Chemistry & Engineering, 4, 6095–6100.

    CAS  Google Scholar 

  • Mansour, M. M., Mohamed, W. A., El-Settawy, A. A., Böhm, M., Salem, M. Z., & Farahat, M. G. (2023). Long-term fungal inoculation of Ficus sycomorus and Tectona grandis woods with aspergillus flavus and Penicillium chrysogenum. Scientific Reports, 13(1), 10453.

    CAS  Google Scholar 

  • Mao, Y., Ai, H., Chen, Y., Zhang, Z., Zeng, P., Kang, L., Li, W., Gu, W., He, Q., & Li, H. (2018). Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere, 208, 59–68.

    CAS  Google Scholar 

  • Marchesan, S., & Prato, M. (2013). Nanomaterials for (Nano)medicine. ACS Medicinal Chemistry Letters, 4(147–14952), 2677–2685.

    Google Scholar 

  • Marques-Santos, L. F., Grassi, G., Bergami, E., Faleri, C., Balbi, T., Salis, A., Damonte, G., Canesi, L., & Corsi, I. (2018). Cationic polystyrene nanoparticle and the sea urchin immune system:Biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology, 12, 847–867.

    CAS  Google Scholar 

  • Materic, D., Kasper-Giebl, A., Kau, D., Anten, M., Greilinger, M., Ludewig, E., van Sebille, E., Rockmann, T., & Holzinger, R. (2020). Micro- and Nanoplastics in Alpine Snow:A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environmental Science & Technology, 54, 2353–2359.

    CAS  Google Scholar 

  • Materić, D., Kjær, H. A., Vallelonga, P., Tison, J. L., Röckmann, T., & Holzinger, R. (2022). Nanoplastics measurements in northern and southern polar ice. Environmental Research, 208, 112741.

    Google Scholar 

  • Matranga, V., & Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment:Model organisms and molecular approaches. Marine Environmental Research, 76, 32–40.

    CAS  Google Scholar 

  • Mattsson, K., Ekvall, M. T., Hansson, L. A., Linse, S., Malmendal, A., & Cedervall, T. (2015). Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environmental Science & Technology, 49, 553–561.

    CAS  Google Scholar 

  • Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L. A., & Cedervall, T. (2017). Brain damage and behavioral disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7, 1–7.

    CAS  Google Scholar 

  • Mendoza, L. M. R., Karapanagioti, H., & Álvarez, N. R. (2018). Micro (nanoplastics) in the marine environment:Current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47–51.

    Google Scholar 

  • Miller, J. R. (2005). Biodiversity conservation and the extinction of experience. Trends in Ecology & Evolution, 20, 430–434.

    Google Scholar 

  • Mintenig, S. M., Bauerlein, P. S., Koelmans, A. A., Dekker, S. C., & van Wezel, A. P. (2018). Closing the gap between small and smaller:Towards a framework to analyze nano- and microplastics in aqueous environmental samples. Environmental Science: Nano, 5, 1640–1649.

    CAS  Google Scholar 

  • Mofijur, M., Ahmed, S. F., Rahman, S. A., Siddiki, S. Y. A., Islam, A. S., Shahabuddin, M., Ong, H. C., Mahlia, T. I., Djavanroodi, F., & Show, P. L. (2021). Source, distribution and emerging threat of micro-and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environmental Research, 195, 110857.

    CAS  Google Scholar 

  • Montes-Burgos, I., Walczyk, D., Hole, P., Smith, J., Lynch, I., & Dawson, K. (2009). Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research, 12, 47–53.

    Google Scholar 

  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32, 967–976.

    CAS  Google Scholar 

  • Natalie, P. (2019). Researchers have created tiny springs to tackle marine microplastic pollution. Sustainable solutions and innovation (pp. 255–272).

    Google Scholar 

  • Neves, D., Sobral, P., Ferreira, J. L., & Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin, 101, 119–126.

    CAS  Google Scholar 

  • Newman, S., Watkins, E., Farmer, A., Ten Brink, P., & Schweitzer, J. P. (2015). The economics of marine litter (pp. 367–394). Marine anthropogenic litter. Springer.

    Google Scholar 

  • Nguyen, B., Claveau-Mallet, D., Hernandez, L. M., Xu, E. G., Farner, J. M., & Tufenkji, N. (2019). Separation and analysis of microplastics and Nanoplastics in complex environmental samples. Accounts of Chemical Research, 52, 858–866.

    CAS  Google Scholar 

  • Nisbet, E. K., Zelenski, J. M., & Murphy, S. A. (2008). The nature relatedness scale. Environment and Behavior, 41, 715–740.

    Google Scholar 

  • Nizzetto, L, Bussi, G, Futter, M.N, Butterfield, D, Whitehead, P.G. (2016). A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Science. Processes & Impacts,18 (8), 1050–1059.

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22.

    CAS  Google Scholar 

  • O’Connor, I. A., Golsteijn, L., & Hendriks, A. J. (2016). Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. Marine Pollution Bulletin, 113(1–2), 17.

    Google Scholar 

  • Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437–445.

    CAS  Google Scholar 

  • Oliveira, M., Almeida, M., & Miguel, I. (2019). A micro(nano)plastic boomerang tale:A never ending story? TrAC Trends in Analytical Chemistry, 112, 196–200.

    CAS  Google Scholar 

  • Panko, J. M., Chu, J., Kreider, M. L., & Unice, K. M. (2013). Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmospheric Environment, 72, 192–199.

    CAS  Google Scholar 

  • Pascall, M. A., Zabik, M. E., Zabik, M. J., & Hernandez, R. J. (2005). Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. Journal of Agricultural and Food Chemistry, 53, 164–169.

    CAS  Google Scholar 

  • Peccia, J., & Westerhoff, P. (2015). We should expect more out of our sewage sludge. Environmental Science & Technology, 49, 8271–8276.

    CAS  Google Scholar 

  • Piccardo, M., Renzi, M., & Terlizzi, A. (2020). Nanoplastics in the oceans:Theory, experimental evidence and real world. Marine Pollution Bulletin, 157, 111317.

    CAS  Google Scholar 

  • Pico, Y., Alfarham, A., & Barcelo, D. (2017). Analysis of emerging contaminants and nanomaterials in plant materials following uptake from soils. TrAC Trends in Analytical Chemistry, 94, 173–189.

    CAS  Google Scholar 

  • Pico, Y., Alfarhan, A., & Barcelo, D. (2019). Nano- and microplastic analysis:Focus on their occurrence in freshwater ecosystems and remediation technologies. TrAC Trends in Analytical Chemistry, 113, 409–425.

    CAS  Google Scholar 

  • Pitt, J. A., Kozal, J. S., Jayasundara, N., Massarsky, A., Trevisan, R., Geitner, N., Wiesner, M., Levin, E. D., & Di Giulio, R. T. (2018). Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquatic Toxicology, 194, 185–194.

    CAS  Google Scholar 

  • Poerio, T., Piacentini, E., & Mazzei, R. (2019). Membrane processes for microplastic removal. Molecules, 24(22), 4148.

    CAS  Google Scholar 

  • Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455.

    CAS  Google Scholar 

  • Prietl, B., Meindl, C., Roblegg, E., Pieber, T. R., Lanzer, G., & Frohlich, E. (2014). Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biology and Toxicology, 30, 1–16.

    CAS  Google Scholar 

  • Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Science of the Total Environment, 662, 246–253.

    CAS  Google Scholar 

  • Rafiee, M., Dargahi, L., Eslami, A., Beirami, E., Jahangiri-Rad, M., Sabour, S., & Amereh, F. (2018). Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere, 193, 745–753.

    CAS  Google Scholar 

  • Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., & D'Amore, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274.

    CAS  Google Scholar 

  • Ramalho, J. P. P., Dordio, A. V., & Carvalho, A. J. P. (2022). The fate of three common plastic nanoparticles in water: A molecular dynamics study. Journal of Molecular Structure, 1249, 131520.

    CAS  Google Scholar 

  • Revel, M., Châtel, A., & Mouneyrac, C. (2018). Micro(nano) plastics: A threat to human health? Current Opinion in Environmental Science & Health, 1, 17–23.

    Google Scholar 

  • Ribeiro-Claro, P., Nolasco, M. M., & Araújo, C. (2017). Characterization of microplastics by Raman spectroscopy. Comprehensive Analytical Chemistry, 75, 119–151.

    CAS  Google Scholar 

  • Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., The, F. C., Werorilangi, S., & The, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5, 14340.

    CAS  Google Scholar 

  • Rosenkranz, P., Chaudhry, Q., Stone, V., & Fernandes, T. F. (2009). A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environmental Toxicology and Chemistry, 28, 2142–2149.

    CAS  Google Scholar 

  • Rubio, L., Marcos, R., & Hernandez, A. (2020). Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 23, 51–68.

    CAS  Google Scholar 

  • Ryan, P. G., Moore, C. J., van Franeker, J. A., & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1999–2012.

    CAS  Google Scholar 

  • Samolada, M. C., & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration., gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management, 34, 411–420.

    CAS  Google Scholar 

  • Sana, S. S., Dogiparthi, L. K., Gangadhar, L., Chakravorty, A., & Abhishek, N. (2020). Effects of microplastics and nanoplastics on marine environment and human health. Environmental Science and Pollution Research, 27, 44743–44756.

    CAS  Google Scholar 

  • Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., Mousazadeh, M., & Tiwari, A. (2022). A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine Pollution Bulletin, 181, 113832.

    CAS  Google Scholar 

  • Sarasamma, S., Audira, G., Siregar, P., Malhotra, N., Lai, Y. H., Liang, S. T., Chen, J. R., Chen, K. H., & Hsiao, C. D. (2020). Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish:Throwing up Alarms of Wide Spread Health Risk of Exposure. International Journal of Molecular Sciences, 21.

  • Scarascia-Mugnozza, G., Sica, C., & Russo, G. (2011). Plastic materials in European agriculture: actual use and perspectives. Journal of Agricultural Engineering, 42(3), 15–28.

    Google Scholar 

  • Schwaferts, C., Niessner, R., Elsner, M., & Ivleva, N. P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry, 112, 52–65.

    CAS  Google Scholar 

  • Sebastian, A., Paul, A. M., Dominic, D., Shaji, M., Jose, P., Sasi, S., & Prasad, M. N. V. (2023). Microbial degradation of plastics. Microplastics in the Ecosphere: Air, Water, Soil, and Food, pp., 305–320.

  • Sexton, K., Needham, L., & L. and L. Pirkle, J. (2004). Human biomonitoring of environmental chemicals: Measuring chemicals in human tissues is the " gold standard" for assessing people's exposure to pollution. American Scientist, 92, 38–45.

    Google Scholar 

  • Shang, L., Nienhaus, K., & Nienhaus, U. G. (2014). Engineered nanoparticles interacting with cells: Size matters. Journal of Nanbiotechnology, 12(5), 1–11.

    Google Scholar 

  • Sharma, S., & Chatterjee, S. (2017). Microplastic pollution., a threat to marine ecosystem and human health:A short review. Environmental Science and Pollution Research International, 24, 21530–21547.

    Google Scholar 

  • Shen, M., Xiong, W., Song, B., Zhou, C., Almatrafi, E., Zeng, G., & Zhang, Y. (2022). Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies. Chemosphere, 305, 135325.

    CAS  Google Scholar 

  • Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., & Ren, X. (2019). Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution, 252, 511–521.

    CAS  Google Scholar 

  • Shen, M., Zhu, Y., Zhang, Y., Zeng, G., Wen, X., Yi, H., & Song, B. (2019). Micro (nano) plastics: Unignorable vectors for organisms. Marine Pollution Bulletin, 139, 328–331.

    CAS  Google Scholar 

  • Silva, C. A. R. E., Fonseca, E. M., Grotto, B. W., Souza, F. E. D., & Baptista, J. A. (2017). Potentially mobile of heavy metals on the surface sediments in tropical hyper-saline and positive estuaries. Anais da Academia Brasileira de Ciências, 89, 2597–2607.

    Google Scholar 

  • Silva-Cavalcanti, J. S., Silva, J. D. B., de França, E. J., de Araújo, M. C. B., & Gusmao, F. (2017). Microplastics ingestion by a common tropical freshwater fishing resource. Environmental Pollution, 221, 218–226.

    CAS  Google Scholar 

  • Simonet, B. M., & Valcarcel, M. (2009). Monitoring nanoparticles in the environment. Analytical and Bioanalytical Chemistry, 393, 17–21.

    CAS  Google Scholar 

  • Singh, S., Naik, T. S. K., Anil, A. G., Dhiman, J., Kumar, V., Dhanjal, D. S., & Ramamurthy, P. C. (2022). Micro (nano) plastics in wastewater: A critical review on toxicity risk assessment, behaviour, environmental impact and challenges. Chemosphere, 290, 133169.

    CAS  Google Scholar 

  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368–4376.

    CAS  Google Scholar 

  • Sridharan, R., & Krishnaswamy, V. G. (2023). Microplastics in the ecosystem and methods to identify them. Microbial Degradation and Detoxification of Pollutants, 2, 205.

    Google Scholar 

  • Stapleton, P. A. (2019). Toxicological considerations of nano-sized plastics. AIMS Environmental Science, 6, 367–378.

    CAS  Google Scholar 

  • Stepien, A. E., Zebrowski, J., Piszczyk, Ł., Boyko, V. V., Riabov, S. V., Dmitrieva, T., Bortnitskiy, V. I., Gonchar, M., Wojnarowska-Nowak, R., & Ryszkowska, J. (2017). Assessment of the impact of bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis and yeast Yarrowia lipolytica on commercial poly (ether urethanes). Polymer Testing, 63, 484–493.

    CAS  Google Scholar 

  • Strungaru, S. A., Jijie, R., Nicoara, M., Plavan, G., & Faggio, C. (2019). Micro- (nano) plastics in freshwater ecosystems:Abundance, toxicological impact and quantification methodology. TrAC Trends in Analytical Chemistry, 110, 116–128.

    CAS  Google Scholar 

  • Su, L., Xiong, X., Zhang, Y., Wu, C., Xu, X., Sun, C., & Shi, H. (2022). Global transportation of plastics and microplastics: A critical review of pathways and influences. Science of the Total Environment, 154884.

  • Tagg, A. S., Sapp, M., Harrison, J. P., & Ojeda, J. J. (2015). Identification and quantification of microplastics in wastewater using focal plane Array-based reflectance Micro-FT-IR imaging. Analytical Chemistry, 87, 6032–6040.

    CAS  Google Scholar 

  • Tallec, K., Huvet, A., Di Poi, C., Gonzalez-Fernandez, C., Lambert, C., Petton, B., Le Goic, N., Berchel, M., Soudant, P., & Paul-Pont, I. (2018). Nanoplastics impaired oyster free living stages, gametes and embryos. Environmental Pollution, 242, 1226–1235.

    CAS  Google Scholar 

  • Talvitie, J., Mikola, A., Setala, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? - A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164–172.

    CAS  Google Scholar 

  • Tamminga, M., Hengstmann, E., & Fischer, E. K. (2018). Microplastic analysis in the south Funen archipelago, Baltic Sea, implementing manta trawling and bulk sampling. Marine Pollution Bulletin, 128, 601–608.

    CAS  Google Scholar 

  • Tang, Y., Rong, J., Guan, X., Zha, S., Shi, W., Han, Y., Du, X., Wu, F., Huang, W., & Liu, G. (2020). Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environmental Pollution, 258, 113845.

    CAS  Google Scholar 

  • Ter Halle, A., Jeanneau, L., Martignac, M., Jarde, E., Pedrono, B., Brach, L., & Gigault, J. (2017). Nanoplastic in the North Atlantic subtropical gyre. Environmental Science & Technology, 51, 13689–13697.

    Google Scholar 

  • Thaiba, B. M., Sedai, T., Bastakoti, S., Karki, A., Anuradha, K. C., Khadka, G., Acharya, S., Kandel, B., Giri, B., & Neupane, B. B. (2023). A review on analytical performance of Micro-and Nanoplastics analysis methods. Arabian Journal of Chemistry, 104686.

  • Thompson, R. C. (2015). Microplastics in the marine environment: Sources, consequences and solutions. In Marine anthropogenic litter (pp. 185–200). Springer.

    Google Scholar 

  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  • Thompson, R. C., Moore, C. J., Vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1526), 2153–2166.

    CAS  Google Scholar 

  • Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17, 1341–1346.

    CAS  Google Scholar 

  • Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., Rio-Echevarria, I. M., & Van den Eede, G. (2019). Review of micro-and nanoplastic contamination in the food chain. Food Additives and Contaminants, 36(5), 639–673.

    CAS  Google Scholar 

  • Triebskorn, R., Braunbeck, T., Grummt, T., Hanslik, L., Huppertsberg, S., Jekel, M., Knepper, T. P., Krais, S., Muller, Y. K., Pittroff, M., Ruhl, A. S., Schmieg, H., Schur, C., Strobel, C., Wagner, M., Zumbulte, N., & Kohler, H. R. (2019). Relevance of nano- and microplastics for freshwater ecosystems: A critical review. TrAC Trends in Analytical Chemistry, 110, 375–392.

    CAS  Google Scholar 

  • Turner, A., Arnold, R., & Williams, T. (2020). Weathering and persistence of plastic in the marine environment:Lessons from LEGO. Environmental Pollution, 262, 114299.

    CAS  Google Scholar 

  • Van Pomeren, M., Brun, N. R., Peijnenburg, W., & Vijver, M. G. (2017). Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 190, 40–45.

    Google Scholar 

  • Varma, C. A. S. L., Sahasrabudhe, M., Ganguly, S., & Mallu, M. R. (2023). Mycoremediation of Micro-/Nanoplastics-contaminated soils. In Micro and Nanoplastics in soil: Threats to plant-based food (pp. 335–382). Springer International Publishing.

    Google Scholar 

  • Vélez-Escamilla, L. Y., & Contreras-Torres, F. F. (2022). Latest advances and developments to detection of micro-and nanoplastics using surface-enhanced Raman spectroscopy. Particle and Particle Systems Characterization, 39(3), 2100217.

    Google Scholar 

  • Venancio, C., Ferreira, I., Martins, M. A., Soares, A., Lopes, I., & Oliveira, M. (2019). The effects of nanoplastics on marine plankton: A case study with polymethylmethacrylate. Ecotoxicology and Environmental Safety, 184, 109632.

    CAS  Google Scholar 

  • Wagner, M., Scherer, C., Alvarez-Munoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems:What we know and what we need to know. Environmental Sciences Europe, 26, 12.

    Google Scholar 

  • Wang, L., Wu, W. M., Bolan, N. S., Tsang, D. C., Li, Y., Qin, M., & Hou, D. (2021). Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 401, 123415.

    CAS  Google Scholar 

  • Wang, S., Liu, M., Wang, J., Huang, J., & Wang, J. (2020). Polystyrene nanoplastics cause growth inhibition., morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. Marine Pollution Bulletin, 158, 111403.

    CAS  Google Scholar 

  • Wang, W., Ge, J., Yu, X., & Li, H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment, 708, 134841.

    CAS  Google Scholar 

  • Wang, W., Yuan, W., Chen, Y., & Wang, J. (2018). Microplastics in surface waters of Dongting Lake and Hong Lake, China. Science of the Total Environment, 633, 539–545.

    CAS  Google Scholar 

  • Waters, R. D., Burnett, E., Lamm, A., & Lucas, J. (2009). Engaging stakeholders through social networking:How nonprofit organizations are using Facebook. Public Relations Review, 35, 102–106.

    Google Scholar 

  • Wayman, C., & Niemann, H. (2021). The fate of plastic in the ocean environment–a minireview. Environmental Science. Processes & Impacts, 23(2), 198–212.

    CAS  Google Scholar 

  • Weinberg, H., Galyean, A., & Leopold, M. (2011). Evaluating engineered nanoparticles in natural waters. TrAC Trends in Analytical Chemistry, 30, 72–83.

    CAS  Google Scholar 

  • Weiss, L., Ludwig, W., Heussner, S., Canals, M., Ghiglione, J.-F., Estournel, C., Constant, M., & Kerherv’e, P. (2021). The missing ocean plastic sink: Gone with the rivers. Science, 373, 107–111.

    CAS  Google Scholar 

  • Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence., fates., impacts and sustainable solutions. Science of the Total Environment, 719, 137512.

    CAS  Google Scholar 

  • Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A Micro issue? Environmental Science & Technology, 51, 6634–6647.

    CAS  Google Scholar 

  • Wright, S. L., Rowe, D., Thompson, R. C., & Galloway, T. S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23, 1031–1033.

    Google Scholar 

  • Xie, L., Gong, K., Liu, Y., & Zhang, L. (2022). Strategies and challenges of identifying nanoplastics in environment by surface-enhanced Raman spectroscopy. Environmental Science and Technology, 57(1), 25–43.

    Google Scholar 

  • Xu, J. L., Lin, X., Wang, J. J., & Gowen, A. A. (2022). A review of potential human health impacts of micro-and nanoplastics exposure. Science of the Total Environment, 851, 158111.

    CAS  Google Scholar 

  • Xu, Q., Huang, Q.-S., Luo, T.-Y., Wu, R.-L., Wei, W., & Ni, B. J. (2021). Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chemical Engineering Journal, 416, 129123.

    CAS  Google Scholar 

  • Xu, Y., Pei, P., & Guo, R. (2015). Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete And Continuous Dynamical Systems Series B, 20, 2257–2267.

    Google Scholar 

  • Yang, Y., Guo, Y., O’Brien, A. M., Lins, T. F., Rochman, C. M., & Sinton, D. (2020). Biological responses to climate change and nanoplastics are altered in concert: Full-factor screening reveals effects of multiple stressors on primary producers. Environmental Science & Technology, 54(4), 2401–2410.

    CAS  Google Scholar 

  • Yang, Y. F., Chen, C. Y., Lu, T. H., & Liao, C. M. (2019). Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. Journal of Hazardous Materials, 366, 703–713.

    CAS  Google Scholar 

  • Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and Nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17.

  • Zbyszewski, M., Corcoran, P. L., & Hockin, A. (2014). Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. Journal of Great Lakes Research, 40, 288–299.

    CAS  Google Scholar 

  • Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology, 47, 7137–7146.

    CAS  Google Scholar 

  • Zhang, B., Chao, J., Chen, L., Liu, L., Yang, X., & Wang, Q. (2021). Research progress of nanoplastics in freshwater. Science of The Total Environment, 757, 143791.

    CAS  Google Scholar 

  • Zhang, R., Silic, M. R., Schaber, A., Wasel, O., Freeman, J. L., & Sepulveda, M. S. (2020). Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. Science of The Total Environment, 724, 138065.

    CAS  Google Scholar 

  • Zhang, W., Liu, Z., Tang, S., Li, D., Jiang, Q., & Zhang, T. (2020). Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex. Chemosphere, 238, 124563.

    CAS  Google Scholar 

  • Zhao, Y., Sun, X., Zhang, G., Trewyn, B.G., Slowing, II., Lin, V.S.Y. (2011). Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano, 5:1366–1375.

  • Zhong, L., Wu, T., Sun, H. J., Ding, J., Pang, J. W., Zhang, L., Ren, N. Q., & Yang, S. S. (2023). Recent advances towards micro (nano) plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts. Journal of Hazardous Materials, 452, 131341.

    CAS  Google Scholar 

  • Zhou, X. X., Hao, L. T., Wang, H. Y., Li, Y. J., & Liu, J. F. (2019). Cloud-point extraction combined with thermal degradation for Nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry. Analytical Chemistry, 91, 1785–1790.

    CAS  Google Scholar 

  • Zubris, K. A., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138, 201–211.

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors greatly acknowledge the RUSA 2.0, MOE, Govt. of India and Tamilnadu State Council for Science and Technology (TNSCST) (C. No. TNSCST/STP/ES/01/VR/2018-2019) for providing the financial assistance and other necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Vethanayaham Jebashalomi and Rajaram Rajendran collected data and literature, analyzed the data, performed statistical analysis, wrote the paper, and did language editing. Partheeban Emmanuel Charles collected data and literature, performed statistical analysis, drew the figures, and performed language editing.

Corresponding author

Correspondence to Rajendran Rajaram.

Ethics declarations

Ethics approval

This paper does not need any ethical approval.

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Funding

All the authors greatly acknowledge the RUSA 2.0, MOE, Govt. of India and Tamilnadu State Council for Science and Technology (TNSCST) (C. No. TNSCST/STP/ES/01/VR/2018–2019) for providing the financial assistance and other necessary facilities.

Competing interests

All the authors agree with the contents and the submission and disclose that there is no conflict of interest, including financial, personal or other relationships with other people or organizations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebashalomi, V., Charles, P.E., Rajaram, R. et al. A critical review on nanoplastics and its future perspectives in the marine environment. Environ Monit Assess 195, 1186 (2023). https://doi.org/10.1007/s10661-023-11701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11701-z

Keywords

Navigation