Skip to main content

Advertisement

Log in

Sensitive response of glaciers to changing climate in the Yankti Kuti valley, Kumaon Himalaya, India, between 1990 and 2021

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study provides the first comprehensive account of the glaciation of the Yankti Kuti valley of the upper Kali Ganga catchment of the Kumaon Himalaya, Uttarakhand. Employing multi-year satellite images from 1990 to 2021, the study investigated the loss of glacial area, ice volume, snout recession, and the changes in the equilibrium line altitude (ELA) in the Yankti Kuti Valley. The investigation showed an overall reduction of ~ 21 km2 (~ 21%) of the total glacier area of the basin. The basin witnesses an ice volume loss of ~ 23% and ~ 41 m upward shifting of the equilibrium line altitude (ELA) between 1990 and 2021. The retreat rate of the four studied glaciers shows ranges from ~ 18 to 41 m/year. The glaciers in the valley are melting at a significant rate due to global warming, giving rise to the increasing number of pro-glacial lakes in the study area from 04 in 1990 to 10 in 2021 and making them vulnerable to glacial lake outburst floods (GLOFs) in the future. The study, therefore, calls for continued glacier monitoring in the upper Kali Ganga catchment in order to assess the future response of the Himalayan cryosphere and to make robust quantitative assessments about the sustainable mitigation and adaptation strategies in the lower valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data used in this research work are available and can be provided.

References

  • Ageta, Y., et al. (2000). Expansion of glacier lakes in recent decades in the Bhutan Himalayas. IAHS publication, 165–176.

  • Albert, T. H. (2002). Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya Ice Cap. Peru. Polar Geography, 26(3), 210–226.

    Google Scholar 

  • Ali, S. N., Biswas, R. H., Shukla, A. D., & Juyal, N. (2013). Chronology and climatic implications of late Quaternary glaciations in the Goriganga valley, central Himalaya. India; Quaternary Science Reviews, 73, 59–76.

    Google Scholar 

  • Ashraf, A., Naz, R., & Rooh, R. (2012). Monitoring and estimation of glacial resource of Azad Jammu and Kashmir using remote sensing and GIS techniques. Pakistan Journal of Meteorology, 816, 31–41.

    Google Scholar 

  • Azam, M. F., Wagnon, P., Ramanathan, A., Vincent, C., Sharma, P., Arnaud, Y., Linda, A., Pottakkal, J. G., Chevallier, P., Singh, V. B., & Berthier, E. (2012). From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. Journal of Glaciology, 58(208), 315–324.

    Google Scholar 

  • Bahr, D. B., Meier, M. F., & Peckham, S. D. (1997). The physical basis of glacier volume-area scaling. Journal of Geophysical Research: Solid Earth, 102(B9), 20355–20362.

    CAS  Google Scholar 

  • Bahr, D. B., Pfeffer, W. T., & Kaser, G. (2015). A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1), 95–140.

    Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing28(2), pp.437–442. ment86(4), pp.566–577.

  • Bajracharya, S. R., Mool, P. K., & Shrestha, B. (2007). Impact of climate change on Himalayan glaciers and glacial lakes: Case studies on GLOF and associated hazards in Nepal and Bhutan. Kathmandu, International Centre for Integrated Mountain Development and United Nations Environmental Programme Regional Office Asia and the Pacific. (ICIMOD Publication 169).

  • Bajracharya, S. R, Mool, P. K., & Shrestha, B. R. (2008). Global climate change and melting of Himalayan glaciers. Melting glaciers and rising sea levels: Impacts and implications, 28–46.

  • Bajracharya, S. R. & Shrestha, B. R. (2011). The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD).

  • Bajracharya, S. R., Maharjan, S. B., & Shrestha, F. (2014). Understanding dynamics of Himalayan glaciers: Scope and challenges of remote sensing. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(8), 1283.

    Google Scholar 

  • Bali, R., Ali, S. N., Agarwal, K. K., Rastogi, S. K., Krishna, K., & Srivastava, P. (2013). Chronology of late Quaternary glaciation in the Pindar valley, Alaknanda basin, Central Himalaya (India). Journal of Asian Earth Sciences, 66, 224–233.

    Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438303–309.

  • Barry, R. G. (2006). The status of research on glaciers and global glacier recession: A review. Progress in Physical Geography, 30(3), 285–306.

    Google Scholar 

  • Benn, D. I., & Gemmell, A. M. D. (1997). Calculating equilibrium line altitudes of former glaciers by the balance ratio method: A new computer spreadsheet. Glacial Geology and Geomorphology. http://ggg.qub.ac.uk/papers/full/1997/tn011997/tn01

  • Benn, D. I., et al. (2005). Reconstruction of equilibrium-line altitudes for tropical and subtropical glaciers. Quaternary International, 1388–21.

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2011a). Mapping of debris covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. Internationl Journalof Remote Sensing, 32, 8095–8119.

    Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Current Science, 102(3), 489–494.

    Google Scholar 

  • Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D. P., Srivastava, D., & Pratap, B. (2013). Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. The Cryosphere, 7(5), 1385–1398.

    Google Scholar 

  • Bhambri, R., et al. (2011b). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology., 57, 543–556. https://doi.org/10.3189/002214311796905604

    Article  Google Scholar 

  • Bhambri, R., Hewitt, K., Kawishwar, P., & Pratap, B. (2017). Surge-type and surge-modified glaciers in the Karakoram. Scientific Reports, 7(1), 1–14.

    CAS  Google Scholar 

  • Bhattacharya, et al. (2016). Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. Journal of Glaciology., 62, 1115–1133. https://doi.org/10.1017/jog.2016.96

    Article  Google Scholar 

  • Bhutiyani, M. R., Vishwas, S. K., & Pawar, N. J. (2007). Long term trends in maximum, minimum and mean annual air temperatures across the Northwestern Hiamalaya during the Twentieth century; Clim. Change, 85, 159–177.

    Google Scholar 

  • Bhutiyani, M. R. (2016). Spatial and temporal variability of climate change in high-altitude regions of NW Himalaya; In Climate change, glacier response, and vegetation dynamics in the Himalaya (pp. 87–101). Springer.

    Google Scholar 

  • Bisht, P., et al. (2015). Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley (Trans Himalaya), Uttarakhand. India; QuaternaryScience Reviews, 129, 147–162.

    Google Scholar 

  • Bisht, P., et al. (2017). Pattern of Holocene glaciation in the monsoon-dominated Kosa Valley, central Himalaya, Uttarakhand. India; Geomorphology, 284, 130–141.

    Google Scholar 

  • Bisht, P., & Rawat, A. (2021). Timing of late quaternary glaciations in the Yankti Kuti valley of the upper Kali Ganga catchment. Northern India. Quaternary Science Reviews, 273, 107246.

    Google Scholar 

  • Bolch, T., et al. (2008a). Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Sciences, 8(6), 1329–1340.

    Google Scholar 

  • Bolch, T., & Kamp, U. (2005). Glacier mapping in high mountains using DEMs, Landsat and ASTER data.

  • Bolch, T., Buchroithner, M., Pieczonka, T., & Kunert, A. (2008b). Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology, 54(187), 592–600.

    Google Scholar 

  • Bolch, T., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    CAS  Google Scholar 

  • Brahmbhatt, R. M., et al. (2015). Peculiar characteristics of fragmentation of glaciers: A case study of western Himalaya, India. International Journal of Geosciences, 6(04), 455.

  • Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165–178.

    Google Scholar 

  • Chand, P., & Sharma, M. C. (2015). Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Global and Planetary Change, 135, 133–147.

    Google Scholar 

  • Chen, J., & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publication, 193, 127–135.

    Google Scholar 

  • Cogley, J. G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52(59), 69–73.

    Google Scholar 

  • Cook, S. J., Kougkoulos, I., Edwards, L. A., Dortch, J., & Hofmann, D. (2016). Glacier change and glacial lake outburst food risk in the Bolivian Andes. The Cryosphere, 10, 2399–2413.

    Google Scholar 

  • Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climatic change in twentieth century India. Climate Chang., 85, 299–321.

    Google Scholar 

  • Dimri, A. P., & Mohanty, U. C. (2007). Location specific prediction of maximum and minimum temperature over the western Himalayas. Meteorological Applications, 14, 79–93.

    Google Scholar 

  • Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3), 775–800.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and Morpho geometrical changes of Dokriani glacier (1962–1995), Garhwal Himalaya, India. Current Science, 86(5), 101–107.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani Glacier from to, Garhwal Himalaya, India. Bulletin of Glaciological Research, 259–17.

  • Dobhal, D. P., & Mehta, M. (2010). Surface morphology, elevation changes and terminus retreat of Dokriani glacier, Garhwal Himalaya: Implication for climate change. Himalayan Geology., 31(1), 71–78.

    Google Scholar 

  • Dobhal, D. P., Mehta, M., & Srivastava, D. (2013). Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, Central Himalaya. India; Journal of Glaciology, 59(217), 961–971.

    Google Scholar 

  • Dyhrenfurth, G. O. (1955). The third Pole – The history of the High Himalaya (1st (UK). Ex Libris, Werner Laurie.

    Google Scholar 

  • Dyurgerov, M. (2005). Glacier mass balance and regime: Data of measurements and analysis. INSTAAR Occasional Paper No. 55. M. Meier and R. Armstrong. Boulder, CO, Institute of Arctic and Alpine Research, University of Colorado. Distributed by National Snow and Ice Data Center.

  • Fujita, K., et al. (2001). Shrinkage of Glacier AX010 in Shorong region, Nepal Himalayas in the 1990s. Bulletin of Glaciological Research, 18, 51–54.

    Google Scholar 

  • Frey, H., et al. (2014). Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, 8(6), 2313–2333.

    Google Scholar 

  • Ganjoo, R. K., & Koul, M. N. (2009). Is the Siachen glacier melting? Current Science, 97(3), 309–310.

    Google Scholar 

  • Gansser, A. (1964). The geology of the Himalayas. New York: Wiley Interscience, 289.

  • Ganyushkin, D. A., Chistyakov, K. V., Volkov, I. V., Bantcev, D. V., Kunaeva, E. P., & Terekhov, A. V. (2017). Present glaciers and their dynamics in the arid parts of the Altai mountains. Geosciences, 7(4), 117.

    Google Scholar 

  • Garg, P. K., Shukla, A., Tiwari, R. K., & Jasrotia, A. S. (2017). Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach. Geomorphology, 284, 99–114.

    Google Scholar 

  • Gergan, J. T., Dobhal, D. P., & Kaushik, R. (1999). Ground penetrating radar ice thickness measurements of Dokriani bamak (glacier), Garhwal Himalaya. Current Science, 77(1), 169–173.

    Google Scholar 

  • Granshaw, F. D., & Fountain, A. G. (2006). Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. Journal of Glaciology, 52(177), 251–256. https://doi.org/10.3189/172756506781828782

    Article  CAS  Google Scholar 

  • Grove, A. T. (2008). A brief consideration of climate forcing factors in view of the Holocene glacier record. Global and Planetary Change, 60(1–2), 141–147.

    Google Scholar 

  • Haeberli, W., & Hoelzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212.

    Google Scholar 

  • Hall, D. K., Bayr, K. J., Schöner, W., Bindschadler, R. A., & Chien, J. Y. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of Environment, 566–577.

  • Hall, M. H., & Fagre, D. B. (2003). Modeled climate-induced glacier change in Glacier National Park, 1850–2100. BioScience, 53(2), 131–140.

    Google Scholar 

  • Haritashya, U. K., et al. (2018). Evolution and controls of large glacial lakes in the Nepal Himalaya. Remote Sensing, 10, 798.

    Google Scholar 

  • Harris, I. P. D. J., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations–The CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), 623–642.

  • Heim, A., & Gansser, A. (1939). Central Himalaya, geological observations of the Swiss expeditions 1936. Mémoire Société Helvetique Science: Naturelle, 731–245.

  • Hewitt, K. (2011). Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mountain Research and Development, 31(3), 188–200.

    Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385.

    CAS  Google Scholar 

  • Juyal, N., et al. (2004). Climate and seismicity in the Higher Central Himalaya during the last 20 kyr: Evidences from Garbyang basin, Uttaranchal, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 315–330.

    Google Scholar 

  • Kaser, G., et al. (2006). Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004. Geophysical Research Letters, 33(19).

  • Kulkarni, A V., Rathore, B. P., Mahajan, S., & Mathur, P. (2005). Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Current Science, 1844–1850.

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing, 32(3), 601–615.

    Google Scholar 

  • Kulkarni, A. V., & Alex, S. (2003). Estimation of recent glacial variations in Baspa Basin using remote sensing technique. Journal of the Indian Society of Remote Sensing, 31, 81–90.

    Google Scholar 

  • Kumar, S., & Dobhal, D. (1994). Snout Fluctuation Study of Chhota Shigri Glacier Lahaul and Spiti District, Himachal Pradesh. Geological Society of India, 44(5), 581–585.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Sunil, D. (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science, 92, 69–74.

    Google Scholar 

  • Kumar, V., Mehta, M., Mishra, A., & Trivedi, A. (2017). Temporal fluctuations and frontal area change of Bangni and Dunagiri glaciers from 1962 to 2013, Dhauliganga Basin, central Himalaya, India. Geomorphology, 28488–98.

  • Kumar, V., et al. (2021). Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, Central Himalaya, India. Quatarnary International, 575213–226

  • Leonard, K. C., & Fountain, A. G. (2003). Map-based methods for estimating glacier equilibrium-line altitudes. Journal of Glaciology, 49, 329–336.

    Google Scholar 

  • LIGG, WECS, and NEA: Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) river basins, Xizang (Tibet), China, Science Press, Beijing, China, 1988.

  • Mal, S., et al. (2019). Recession and morphological changes of the debris-covered Milam Glacier in Gori Ganga valley, Central Himalaya, India, derived from satellite data. Frontiers in Environmental Science, 7(42).

  • Mehta, M., Dobhal, D. P., & Bisht, M. P. S. (2011). Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Progress in Physical Geography, 35(6), 721–738.

    Google Scholar 

  • Mehta, M., Majeed, Z., Dobhal, D. P., & Srivastava, P. (2012). Geomorphological evidences of post-LGM glacial advancements in the Himalaya: A study from Chorabari Glacier, Garhwal Himalaya. India. Journal of Earth System Science, 121(1), 149–163.

    Google Scholar 

  • Mehta, M., et al. (2014a). Late Quaternary glacial advances in the tons river valley, Garhwal Himalaya, India and regional synchronicity. The Holocene, 24, 1336–1350.

  • Mehta, M., Dobhal, D., Kesarwani, K., Pratap, B., Kumar, A., & Verma, A. (2014b). Monitoring of glacier changes and response time in Chorabari Glacier, Central Himalaya, Garhwal, India. Current Science, 107, 281–289.

    Google Scholar 

  • Meier, M. F., & Post, A. S. (1962). Recent variations in mass net budgets of glaciers in western North America. IASH Publication, 58, 63–77.

    Google Scholar 

  • Mishra, A., Nainwal, H. C., Dobhal, D. P., & Shankar, R. (2021). Volume estimation of glaciers in Upper Alaknanda Basin, Garhwal Himalaya using numerical and scaling methods with limited field based data. Himalayan Geology, 42(2), 336–344.

    Google Scholar 

  • Mool, P. K., et al. (2002a). Inventory of glaciers, glacial lakes and glacial lake outburst floods monitoring and early warning systems in the Hindu-Kush Himalayan region, Bhutan, International Center for Integrated Mountain Development, Kathmandu, Nepal.

  • Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S., & Bolch, T. (2018). Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 148, 219–233.

    CAS  Google Scholar 

  • Murtaza, K. O., Dar, R. A., Paul, O. J., Bhat, N. A., & Romshoo, S. A. (2021). Glacial geomorphology and recent glacial recession of the Harmukh Range, NW Himalaya. Quaternary International, 575, 236–248.

    Google Scholar 

  • Nainwal, H. C., et al. (2008). Temporal changes in rate of recession: Evidence from Satopanth and BhagirathKharak Glacier, Uttarakhand, using total station survey. Current Science, 94(5), 653–660.

  • Nie, Y., et al. (2021). Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2(2), 91–106.

    Google Scholar 

  • Nye, J. F. (1952). The mechanics of glacier flow. Journal of Glaciology, 2(12), 82–93.

    Google Scholar 

  • Oberoi, L. K., Siddiqui, M. A., & Srivastava, D. (2001). Recession of Chipa, Meola and Jhulang (Kharsa) glaciers in Dhauliganga valley between 1912 and 2000. GSI Special Publication, 11(65), 57–60.

    Google Scholar 

  • Oerlemans, J. (1989). On the response of valley glaciers to climatic change. Glacier Fluctuations and Climatic Change: Proceedings of the Symposium on Glacier Fluctuations and Climatic Change, held in Amsterdam, 1–5 June 1987 (pp. 353–371). Springer Netherlands.

    Google Scholar 

  • Oerlemans, J., et al. (1998). Modelling the response of glaciers to climate warming. Climate Dynamics, 14, 267–274.

    Google Scholar 

  • Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the area× altitude, the area× altitude balance ratio and the area× altitude balance index methods and their validation. Quaternary International, 138, 22–31.

    Google Scholar 

  • Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34(15), 5584–5597.

    Google Scholar 

  • Paul, F., Kääb, A., & Haeberli, W. (2007). Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 56(1–2), 111–122.

    Google Scholar 

  • Prakash, S., Sharma, M. C., Sreekesh, S., Chand, Pandey, V. K., Latief, S. U., Deswal, S., Manna, I., Das, S., Mandal, S. T., & Bahuguna, I.M. (2022). Decadal terminus position changes and ice thickness measurement of Menthosa Glacier in Lahaul region of North-Western Himalaya. Geocarto International, 37(22), 6422–6441.

    Google Scholar 

  • Racoviteanu, A. E., Williams, M. W., & Barry, R. G. (2008a). Optical remote sensing of glacier characteristics: A review with focus on the Himalaya. Sensors, 8(5), 3355–3383.

    Google Scholar 

  • Racoviteanu, A. E., Arnaud, Y., Williams, M. W., & Ordonez, J. (2008b). Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 54(186), 499–510.

    Google Scholar 

  • Racoviteanu, A. E., Arnaud, Y., Williams, M. W., & Manley, W. F. (2015). Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga-Sikkim area, eastern Himalaya. The Cryosphere, 9(2), 505–523.

    Google Scholar 

  • Raj, K. B. G. (2011). Recession and reconstruction of Milam Glacier, Kumaon Himalaya, observed with satellite imagery. Current Science, 100, 1420–1425.

    Google Scholar 

  • Raj, K. B. G., Remya, S. N., & Kumar, K. V. (2013). Remote sensing-based hazard assessment of glacial lakes in Sikkim Himalaya. Current Science, 104, 359–364.

    Google Scholar 

  • Raj, K. B., Kumar, V. K., Mishra, R., & Mukhtar, M. A. (2014). Remote sensing based assessment of Glacial Lake growth in Milam glacier, Goriganga Basin, Kumaon Himalaya. Journal of Geological Society of India, 83, 385–392.

  • Raj, K. B., Nageswara Rao, V. V., Kumar, K. V., & Diwakar, P. G. (2017). Alarming recession of glaciers in Bhilangna basin, Garhwal Himalaya, from 1965 to 2014 analysed from Corona and Cartosat data. Geomatics, Natural Hazards and Risk, 8(2), 1424–1439.

    Google Scholar 

  • Ramage, J. M., Smith, J. A., Rodbell, D. T., & Seltzer, G. O. (2005). Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Journal of Quaternary Science, 20(7), 777–788.

    Google Scholar 

  • Rana, R. S., Bhagat, R. M., Vaibav, K., & Chitra, S. (2006). Inventory of two decades for glaciers and glacial lakes in Satluj River Basin of Himachal Pradesh. Journal of Agriculture Physics, 6, 28–34.

    Google Scholar 

  • Rashid, I., & Majeed, U. (2020). Retreat and geodetic mass changes of Zemu Glacier, Sikkim Himalaya, India, between 1931 and 2018. Regional Environmental Change, 20(4), 125.

    Google Scholar 

  • Rashid, I., Majeed, U., Najar, N. A., & Bhat, I. A. (2021). Retreat of Machoi Glacier, Kashmir Himalaya between 1972 and 2019 using remote sensing methods and field observations. Science of the Total Environment, 785, 147376.

    CAS  Google Scholar 

  • Rashid, I., Romshoo, S. A., & Abdullah, T. (2017). The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. Journal of Asian Earth Sciences, 138, 38–50.

    Google Scholar 

  • Roe, G. H., Baker, M. B., & Herla, F. (2017). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience, 10, 95–99.

    CAS  Google Scholar 

  • Sakai, A. (2012). Glacial lakes in the Himalayas: A review on formation and expansion processes. Global Environmental Research, 16, 23–30.

  • Sangewar, C. V., & Kulkarni, A. V. (2011). Observational studies of the recent past. In Report of the Study Group on Himalayan glaciers prepared for the Office of the Principal Scientific Adviser to the Government of India, PSA/2011/2, 25-76.

  • Sarikaya, M. A., Bishop, M. P., Shroder. J. F., & Olsenholler, J. A. (2012). Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Letters, 3(1), 77–84.

  • Sati, S. P., et al. (2014). Timing and extent of Holocene glaciations in the monsoon dominated Dunagiri valley (Bangni glacier), Central Himalaya, India. Journal of Asian Earth Sciences, 91(2014), 125–136.

    Google Scholar 

  • Schickhoff, U., Singh, R. B., & Mal, S. (2016). Climate change and dynamics of glaciers and vegetation in the Himalaya: An overview. Climate change, glacier response, and vegetation dynamics in the Himalaya, 1–26.

  • She, J., Zhang, Y., Li, X., & Feng, X. (2015). Spatial and temporal characteristics of snow cover in the Tizinafu watershed in the western Kunlun Mountains. Remote Sensing, 7(4), 3426–3445.

    Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12, 2775–2786.

    Google Scholar 

  • Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939–945.

    CAS  Google Scholar 

  • Shukla, A., & Qadir, J. (2016). Differential response of glaciers with varying debris cover extent: Evidence from changing glacier parameters. International Journal of Remote Sensing, 37(11), 2453–2479.

    Google Scholar 

  • Shukla, S. P., & Siddiqui, M. A. (2001). Recession of snout front of Milam glacier, Goriganga valley, Pithoragarh district, Uttar Pradesh. Geological Survey of India, Special Publication, 53, 71–75.

    Google Scholar 

  • Shukla, T., Mehta, M., Jaiswal, M. K., Srivastava, P., Dobhal, D. P., Nainwal, H. C., & Singh, A. K. (2018). Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India. Quaternary Science Reviews, 181, 43–64.

    Google Scholar 

  • Singh, S. K., et al. (2012). Estimation of glacier ice thickness using ground penetrating radar in the Himalayan region. Current Science, 103, 68–73.

    Google Scholar 

  • Sinha, A. K. (1981). Geology and tectonics of the Himalayan regions of Ladakh, Himachal, Garhwal-Kumaun and Arunachal Pradesh: A review; Zagros Hindu Kush. Himalaya; Geodynamic Evolution, 3, 122–148.

    Google Scholar 

  • Sissons, J. B. (1974). A late-glacial ice cap in the central Grampians, Scotland. Transactions of the Institute of British Geographers, 62, 95–114.

    Google Scholar 

  • Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., & Shahgedanova, M. (2007). Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Annals of Glaciology, 46, 195–203.

    Google Scholar 

  • Thakuri, S., et al. (2014). Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere, 8, 1297–1315.

  • Vohra, C. (1981). Himalayan glaciers. The Himalaya: the aspects of change (pp. 138–151). Oxford University Press.

    Google Scholar 

  • Vohra, C. P. (1993). Himalayan glaciers. In B. G. Verghese & R. I. Ramaswamy (Eds.), Harnessing the eastern Himalayan rivers. Kenark, New Delhi: Regional Cooperation in South Asia.

    Google Scholar 

  • Yao, T., et al. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667.

  • Zemp, M., et al. (2008). Global glaciers changes: Facts and figures 2008. WGMS/UNEP, 88.

  • Zemp, M., Hoelzle, M., & Haeberli, W. (2009). Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Annals of Glaciology, 50(50), 101–111.

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the Director of the Wadia Institute of Himalayan Geology, India, for his continuous support and provision of the necessary resources. The author is grateful to the Editor and anonymous reviewers for their valuable suggestions which helped me to improve the manuscript. I express my profound gratitude towards Prof. Y. P. Sundriyal, Dr. Navin Juyal, Dr. Pradeep Srivastava, and Prof. Lewis Owen for their constant support and encouragement.

Funding

This work was supported by Department of Science and Technology, New Delhi under National Post Doc Fellowship (PDF/2016/003113).

Author information

Authors and Affiliations

Authors

Contributions

Pinkey Bisht conceived the idea, did the fieldwork, carried out the remote sensing data analysis, and wrote the manuscript.

Corresponding author

Correspondence to Pinkey Bisht.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, P. Sensitive response of glaciers to changing climate in the Yankti Kuti valley, Kumaon Himalaya, India, between 1990 and 2021. Environ Monit Assess 195, 1024 (2023). https://doi.org/10.1007/s10661-023-11592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11592-0

Keywords

Navigation