Skip to main content
Log in

A study on microzooplankton community from the coastal waters of eastern Arabian Sea: emphasis on the dominance of heterotrophic dinoflagellates

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We studied the community composition of microzooplankton (MZP) from the surface waters off Candolim, Goa. The MZP communities were examined for the year 2013, covering different seasons and four stations (Near-shore: G3 & G4, offshore: G5 & G6). A total of 30 species belonging to 24 genera were recorded, which include loricate ciliates (LC: 14 species of 13 genera), aloricate ciliates (ALC: 5 species of 3 genera), heterotrophic dinoflagellates (HDS: 11 species of 8 genera), and copepod nauplii. The MZP abundance in the coastal waters varied spatially irrespective of different seasons, with higher abundance in the offshore stations (G5 & G6, 38–127 cells L-1) and lower abundance in the near-shore stations (G3 & G4, 20–97 cells L-1). The MZP community composition showed the dominance of HDS (16–85%) in the near-shore stations during most of the seasons and inferiority during NEM (16–18%). Moreover, all the coastal waters (near and offshore) were dominated by HDS (58–85%) during spring inter-monsoon. The dominant species of HDS were Dinophysis apicata, Dinophysis caudata, Prorocentrum micans, Protoperidinium breve, Protoperidinium latistriatum, and Protoperidinium granii. The statistical analysis (Canonical correspondence analysis and Spearman’s rank correlation) depicts that the MZP abundance and community composition were mainly controlled by salinity (r = 0.4–0.7). Whereas the dominance of HDS in the coastal waters could be the reason for its mixotrophic nature and diverse feeding mechanism. Thus, a strong positive correlation between the HDS and LC (r = 0.73–0.92) showed the feeding ability of HDS in their relative community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on request

References

  • Ahmed, A., Kurian, S., Gauns, M., Chndrasekhararao, A. V., Mulla, A., Naik, B., Naik, H., & Naqvi, S. W. A. (2016). Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Continental Shelf Research, 119, 30–39.

    Article  Google Scholar 

  • Al-yamani, F., Madhusoodhanan, R., Skryabin, V., & Al-said, T. (2019). The response on microzooplankton (tintinnid) community to salinity related environmental changes in a hypersaline marine system in the north western Arabian Gulf. Deep-Sea Research Part II, 166, 151–170.

    Article  CAS  Google Scholar 

  • Almeda, R., Calbet, A., Alcaraz, M., Saiz, E., Trepat, I., Arin, L., Movilla, J., & Saló, V. (2011). Trophic role and carbon budget of metazoan microplankton in northwest Mediterranean coastal waters. Limnology and Oceanography, 56(1), 415–430.

    Article  CAS  Google Scholar 

  • Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A., & Hernández-León, S. (2019). Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Scientific Report, 9(1), 1–19.

    CAS  Google Scholar 

  • Banse, K. (1968). Hydrography of the Arabian Sea shelf of India and Pakistan and effects on demersal fishes. Deep Sea Research I, 15(1), 45–79.

    Google Scholar 

  • Banse, K., & English, D. C. (1993). Revision of satellite-based phytoplankton pigment data from the Arabian Sea during the northeast monsoon. Marine Research Pakistan, 2, 83–103.

    Google Scholar 

  • Barton, A. D., Irwin, A. J., Finkel, Z. V., & Stock, C. A. (2016). Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of National Academic Science, 113(11), 2964–2969.

    Article  CAS  Google Scholar 

  • Beers, J. R., Stevenson, M. R., Eppley, R. W., & Brooks, E. R. (1971). Plankton populations and upwelling off the coast of Peru (June 1969 (No. UCSD-10-P-20-93)). California Univ.

    Google Scholar 

  • Biswas, S. N., Godhantaraman, N., Rakshit, D., & Sarkar, S. K. (2013). Community composition, abundance, biomass and production rates of Tintinnids (Ciliata: Protozoa) in the coastal regions of Sundarban Mangrove wetland, India. Indian Journal of Marine Science, 42(2), 163–173.

    CAS  Google Scholar 

  • Calbet, A., & Landry, M. R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography, 49(1), 51–57.

    Article  CAS  Google Scholar 

  • Caron, D. A., & Hutchins, D. A. (2013). The effects of changing climate on microzooplankton grazing and community structure: Drivers, predictions and knowledge gaps. Journal of Plankton Research, 35, 235–252.

    Article  Google Scholar 

  • Coats, D. W., Choi, J., Jung, J. H., Kim, Y. O., Lu, Y., & Nielsen, L. T. (2020). Mixotrophic scrippsielloid dinoflagellates prey on tintinnid ciliates. Aquatic Ecosystem and Health Management, 23(1), 69–78.

    Article  Google Scholar 

  • De Vernal, A., Rochon, A., & Radi, T. (2013). Paleoceanography, biological proxies dinoflagellates. Encyclopedia of Quaternary Science, 2, 800–815.

    Article  Google Scholar 

  • Devassy, V. P., & Goes, J. I. (1988). Phytoplankton community structure and succession in a tropical estuarine complex (central west coast of India). Estuarine Coastal Shelf Science, 27(6), 671–685.

    Article  Google Scholar 

  • Devi, C. A., Jyothibabu, R., Sabu, P., Jacob, J., Habeebrehman, H., Prabhakaran, M. P., Jayalakshmi, K. J., & Achuthankutty, C. T. (2010). Seasonal variations and trophic ecology of microzooplankton in the southeastern Arabian Sea. Continental Shelf Research, 30(9), 1070–1084.

    Article  Google Scholar 

  • Dolan, J. R., Claustre, H., Carlotti, F., Plounevez, S., & Moutin, T. (2002). Microzooplankton diversity: Relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep Sea Research Part I, 49(7), 1217–1232.

    Article  Google Scholar 

  • Dolan, J. R., Lemee, R., Gasparini, S., Mousseau, L., & Heyndrickx, C. (2006). Probing diversity in the plankton: Using patterns in tintinnids (planktonic marine ciliates) to identify mechanisms. Hydrobiologia, 555(1), 143–157.

    Article  Google Scholar 

  • Elangovan, S. S., & Padmavati, G. (2017). Distribution, diversity and carbon content of the tintinnids from the coastal waters of Port Blair, South Andaman. Regional Studies in Marine Science, 14, 132–144.

    Article  Google Scholar 

  • Elangovan, S. S., & Gauns, M. U. (2021). A comparative study on microzooplankton communities in two tropical monsoonal estuaries. Journal of Sea Research, 171(102034), 1–8.

    Google Scholar 

  • Elangovan, S. S., Arun Kumar, M., Karthik, R., Siva Sankar, R., Jayabarathi, R., & Padmavati, G. (2012). Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island. Aquatic Biosystems, 8(1), 1–9.

    Google Scholar 

  • Elangovan, S. S., Gauns, M., Begum Mulla, A., & Ahmed, A. (2018). Spatial variability of microzooplankton in the central Arabian Sea during spring intermonsoon. Marine Ecology, 39(6), 1–7.

    Google Scholar 

  • Gauns, M. U. (2000). Role of microzooplankton in the food chain dynamics of some tropical marine environments. (Doctoral dissertation, Goa University).

    Google Scholar 

  • Gauns, M., Mochemadkar, S., Patil, S., Pratihary, A., Naqvi, S. W. A., & Madhupratap, M. (2015). Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary. Journal Oceanography, 71(4), 345–359.

    Article  CAS  Google Scholar 

  • Gomez, F. (2007). Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecologica, 32(2), 188–202.

    Article  Google Scholar 

  • Hansen, P. J. (1992). Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Marine Biology, 114(2), 327–334.

    Article  Google Scholar 

  • Horner, R. A., Postel, J. R., Halsband-Lenk, C., Pierson, J. J., Pohnert, G., & Wichard, T. (2005). Winter-spring phytoplankton blooms in Dabob Bay, Washington. Progress in Oceanography, 67(3-4), 286–313.

    Article  Google Scholar 

  • JGOFS. (1994). JGOFS core measurement protocols: Reports of the core measurements working groups (Vol. 29, p. 149). JGOFS Manual and Guides (UNESCO).

    Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Maheswaran, P. A., Jayalakshmy, K. V., Nair, K. K. C., & Achuthankutty, C. T. (2008). Seasonal variation of microzooplankton (20–200 μm) and its possible implications on the vertical carbon flux in the western Bay of Bengal. Continental Shelf Research, 28(6), 737–755.

    Article  Google Scholar 

  • Jyothibabu, R., Devi, C. A., Madhu, N. V., Sabu, P., Jayalakshmy, K. V., Jacob, J., Habeebrehman, H., Prabhakaran, M. P., Balasubramanian, T., & Nair, K. K. C. (2008). The response of microzooplankton (20–200 μm) to coastal upwelling and summer stratification in the southeastern Arabian Sea. Continental Shelf Research, 28(4-5), 653–671.

    Article  Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., Martin, G. D., & Nair, K. K. C. (2006). Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters–India). Estuarine Coastal Shelf Science, 69(3-4), 505–518.

    Article  Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Maheswaran, P. A., Nair, K. K. C., Venugopal, P., & Balasubramanian, T. (2003). Dominance of dinoflagellates in micro-zooplankton community in the oceanic regions of the Bay of Bengal and the Andaman Sea. Current Science, 84(9), 1247–1253.

    CAS  Google Scholar 

  • Kamiyama, T., & Tsujino, M. (1996). Seasonal variation in the species composition of tintinnid ciliates in Hiroshima Bay, the Seto Inland Sea of Japan. Journal of Plankton Research, 18(12), 2313–2327.

    Article  Google Scholar 

  • Kumar, S. P., Madhupratap, M., Kumar, M. D., Gauns, M., Muraleedharan, P. M., Sarma, V. V. S. S., & De Souza, S. N. (2000). Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea. Journal of Earth System Science, 109(4), 433–441.

    Article  Google Scholar 

  • Lee, J. B., & Kim, Y. H. (2010). Distribution of Tintinnids (Loricate Ciliates) in East Asian. Aquatic Sciences, 6, 139–181.

    Google Scholar 

  • Lessard, E. J., & Swift, E. (1985). Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Marine Biology, 87(3), 289–296.

    Article  Google Scholar 

  • Lissaed, E. (1991). The trophic role of heterotrophic dinoflagellates in diverse marine environments. Marine Microbial Food Webs, 5, 49–58.

    Google Scholar 

  • Lopez-Abbate, C. M. (2021). Microzooplankton communities in a changing Ocean: A risk assessment. Diversity, 13(82), 1–26.

    Google Scholar 

  • Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., & Ramaiah, N. (1996). Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature, 384(6609), 549–552.

    Article  CAS  Google Scholar 

  • Modigh, M., & Castaldo, S. (2002). Variability and persistence in tintinnid assemblages at a Mediterranean coastal site. Aquatic Microbial Ecology, 28(3), 299–311.

    Article  Google Scholar 

  • Naik, B. R., Gauns, M., Bepari, K., Uskaikar, H., & Shenoy, D. M. (2020). Variation in phytoplankton community and its implication to dimethylsulphide production at a coastal station off Goa, India. Marine Environmental Research, 157, 104926.

    Article  CAS  Google Scholar 

  • Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V. S. S., D’souza, W., Joseph, S., & George, M. D. (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature, 408(6810), 346–349.

    Article  CAS  Google Scholar 

  • Narvekar, J., Roy Chowdhury, R., Gaonkar, D., Kumar, P. K., & Prasanna Kumar, S. (2021). Observational evidence of stratification control of upwelling and pelagic fishery in the eastern Arabian Sea. Scientific Reports, 11(1), 1–13.

    Article  Google Scholar 

  • Padmakumar, K. B., Thomas, L. C., Vimalkumar, K. G., Devi, C. A., Maneesh, T. P., Vijayan, A., Gupta, G. V. M., & Sudhakar, M. (2017). Hydrobiological responses of the North Eastern Arabian Sea during late winter and early spring inter-monsoons and the repercussions on open ocean blooms. Journal of Marine Biological Association, 97(7), 1467–1478.

    Article  CAS  Google Scholar 

  • Pierce, R. W., & Turner, J. T. (1992). Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Science, 6(2), 139–181.

    Google Scholar 

  • Pillai, V. N., Pillai, V. K., Gopinathan, C. P., & Nandakumar, A. (2000). Seasonal variations in the physico-chemical and biological characteristics of the eastern Arabian Sea. Journal of Marine Biological Association of India, 42(1 & 2), 1–21.

    Google Scholar 

  • Rocke, E., Jing, H., & Liu, H. (2013). Phylogenetic composition and distribution of picoeukaryotes in the hypoxic northwestern coast of the Gulf of Mexico. Microbiology Open, 2(1), 130–143.

    Article  CAS  Google Scholar 

  • Saito, H., Ota, T., Suzuki, K., Nishioka, J., & Tsuda, A. (2006). Role of heterotrophic dinoflagellate Gyrodinium sp. in the fate of an iron induced diatom bloom. Geophysical Research Letter, 33(9), 1–4.

    Article  Google Scholar 

  • Sawant, S. S., & Madhupratap, M. (1996). Seasonality and composition of phytoplankton in the Arabian Sea. Current Science, 71, 869–873.

    Google Scholar 

  • Sherr, E. B., & Sherr, B. F. (1994). Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs. Microbial Ecology, 28(2), 223–235.

    Article  CAS  Google Scholar 

  • Sherr, E. B., & Sherr, B. F. (2007). Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series, 352, 187–197.

    Article  Google Scholar 

  • Sherr, E., & Sherr, B. F. (1988). Role of microbes in pelagic food webs: A revised concept. Limnology and Oceanography, 33(5), 1225–1227.

    Article  Google Scholar 

  • Simonsen, R. (1974). The diatom plankton of the Indian Ocean Expedition of R/V “Meteor” 1964-1965. Meteor Forschungsergebnisse: Reihe D, Biologie, 19, 1–107.

    Google Scholar 

  • Subrahmanyan, R. (1959). Studies on the phytoplankton of the west coast of India. Proceedings of Indian Academic Science B, 50(4), 189–252.

    Article  Google Scholar 

  • Uchida, T., Kamiyama, T., & Matsuyama, Y. (1997). Predation by a photosynthetic dinoflagellate Gyrodinium instriatum on loricated ciliates. Journal of Plankton Research, 19(5), 603–608.

    Article  Google Scholar 

  • White, J. R., & Roman, M. R. (1992). Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Marine Ecology Progress Series, 86, 251–251.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-NIO Goa, India, for providing the required facilities. The help rendered by field trip participants during sample collections is significant and grateful. We also thank Dr. Damodar M Shenoy, Principal Scientist, CSIR-NIO, for providing a measured Dissolved Oxygen value. This work was carried out under the SIBER-India program (MOES-India: GAP2425). This is NIO’s contribution no.7096.

Funding

This research work was funded by Ministry of Earth Science (MoES-India) under the project of the SIBER-India program (GAP2425)

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were made by Mangesh Gauns. Material preparation, data collection, and analysis were performed by Sai Elangovan S. The first draft of the manuscript was written by Sai Elangovan S and all authors remarked on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mangesh U Gauns.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “ethical responsibilities of authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Elangovan, S., Gauns, M.U. A study on microzooplankton community from the coastal waters of eastern Arabian Sea: emphasis on the dominance of heterotrophic dinoflagellates. Environ Monit Assess 195, 948 (2023). https://doi.org/10.1007/s10661-023-11568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11568-0

Keywords

Navigation