Skip to main content
Log in

Assessment of toxicity potential of neglected Mithi River water from Mumbai megacity, India, in zebrafish using embryotoxicity, teratogenicity, and genotoxicity biomarkers

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Mithi River begins at Vihar Lake and flows through the industrial hub of the city of Mumbai, India, and merges with the Arabian Sea at Mahim Creek. The current study was carried out to assess the ecotoxicological effects of the Mithi River surface water in zebrafish (Danio rerio) embryos. Water samples were collected from ten sampling sites (S1 to S10) located along the course of the Mithi River. The toxicity of water samples was assessed using a zebrafish embryo toxicity test (ZFET). Water samples were diluted from all sites at 1:0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128 times. The lowest and highest LDil 20 values for 96 h were estimated as 9.16 and 74.18 respectively for the S2 and S5 sites. The results of embryotoxicity and teratogenicity assays indicated a significant difference (p < 0.0001) between embryos exposed to control and sampling sites (except S1) for various endpoints such as mortality, egg coagulation, pericardial edema, yolk sac edema, tail bend, and skeletal deformities. The histopathological analysis revealed various lesions, ascertaining the toxic effects of water samples. The comet assay revealed significantly higher DNA damage (except S1) in embryos exposed to sites S5 and S6 with OTM values of 4.46 and 2.48 respectively. The results indicated that the Mithi River is polluted with maximum pollution load at the middle stretches. The study further indicated that the pollutants in the Mithi River (except S1) could potentially be hazardous to the aquatic organisms; therefore, continuous biomonitoring of the river is needed for its revival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research/Genetic Toxicology, 343(2), 121–135. https://doi.org/10.1016/0165-1218(95)90078-0

    Article  CAS  Google Scholar 

  • Anderson, D., Yu, T.-W., Phillips, B. J., & Schmezer, P. (1994). The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 307(1), 261–271. https://doi.org/10.1016/0027-5107(94)90300-X

    Article  CAS  Google Scholar 

  • Anderson, S. L., & Wild, G. C. (1994). Linking genotoxic responses and reproductive success in ecotoxicology. Environmental Health Perspectives, 102(suppl 12), 9–12.

    Article  Google Scholar 

  • APHA (1998). Standards Methods for the Examination of Water and Waste Water, 20th Edition, American Public Health Association, Washington, D.C. 1(1):10-150.

  • Arellano-Aguilar, O., Solis-Angeles, S., Serrano-García, L., Morales-Sierra, E., Méndez-Serrano, A., & Montero-Montoya, R. (2015). Use of the zebrafish embryo toxicity test for risk assessment purpose: A case study. Journal of Fisheries Sciences. Com, 9(4), 52.

    CAS  Google Scholar 

  • Babic, S., Barisic, J., Visic, H., Sauerborn Klobucar, R., Topic Popovic, N., Strunjak-Perovic, I., Coz-Rakovac, R., & Klobucar, G. (2017). Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. Water Research, 115, 9–21. https://doi.org/10.1016/j.watres.2017.02.049

    Article  CAS  Google Scholar 

  • Bai, H., Kong, W.-W., Shao, C.-L., Li, Y., Liu, Y.-Z., Liu, M., Guan, F.-F., & Wang, C.-Y. (2016). Zebrafish embryo toxicity microscale model for ichthyotoxicity evaluation of marine natural products. Marine Biotechnology, 18, 264–270.

    Article  CAS  Google Scholar 

  • Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. (2020). Concerns and threats of contamination on aquatic ecosystems (pp. 1–26). Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation.

    Google Scholar 

  • Bhave, P., & Shrestha, R. (2018). Total mercury status in an urban water body, Mithi River, Mumbai, and analysis of the relation between total mercury and other pollution parameters. Environmental monitoring and assessment, 190(12), 711.

    Article  Google Scholar 

  • Bluhm, K., Seiler, T.-B., Anders, N., Klankermayer, J., Schaeffer, A., & Hollert, H. (2016). Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent. Science of The Total Environment, 566, 786–795.

    Article  Google Scholar 

  • Boyd, C. E. (1990). Water quality in ponds for aquaculture. In Agriculture Experiment Station (pp. 1–482). Auburn University.

    Google Scholar 

  • Braunbeck, T., Böttcher, M., Hollert, H., Kosmehl, T., Lammer, E., Leist, E., Rudolf, M., & Seitz, N. (2005). Towards an alternative for the acute fish LC50 test in chemical assessment: The fish embryo toxicity test goes the multi-species-an update. ALTEX-Alternatives to Animal Experimentation, 22(2), 87–102.

    Google Scholar 

  • Braunbeck, T., Kais, B., Lammer, E., Otte, J., Schneider, K., Stengel, D., & Strecker, R. (2015). The fish embryo test (FET): Origin, applications, and future. Environmental Science and Pollution Research, 22, 16247–16261.

    Article  CAS  Google Scholar 

  • Cavas, T., & Ergene-Gozukara, S. (2005). Genotoxicity evaluation of metronidazole using the piscine micronucleus test by acridine orange fluorescent staining. Environmental Toxicology and Pharmacology, 19(1), 107–111.

    Article  CAS  Google Scholar 

  • Celander, M. C. (2011). Cocktail effects on biomarker responses in fish. Aquatic Toxicology, 105(3–4), 72–77.

    Article  CAS  Google Scholar 

  • De Guzman, M. C., Chua, P. A. P., & Sedano, F. S. (2020). Embryotoxic and teratogenic effects of polyethylene microbeads found in facial wash products in Zebrafish (Danio rerio) using the Fish Embryo Acute Toxicity Test. BioRxiv, 2020–2029.

  • Frenzilli, G., Nigro, M., & Lyons, B. P. (2009). The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research, 681(1), 80–92.

    Article  CAS  Google Scholar 

  • Garcia-Käufer, M., Gartiser, S., Hafner, C., Schiwy, S., Keiter, S., Gründemann, C., & Hollert, H. (2015). Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. Environmental Science and Pollution Research, 22, 16341–16357.

    Article  Google Scholar 

  • Giannaccini, M., Cuschieri, A., Dente, L., & Raffa, V. (2014). Non-mammalian vertebrate embryos as models in nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 703–719.

    Article  CAS  Google Scholar 

  • Gilbert-Barness, E. (2010). Teratogenic causes of malformations. Annals of Clinical & Laboratory Science, 40(2), 99–114.

    CAS  Google Scholar 

  • González-González, E. D., Gómez-Oliván, L. M., Islas-Flores, H., & Galar-Martínez, M. (2021). Developmental effects of amoxicillin at environmentally relevant concentration using zebrafish embryotoxicity test (ZET). Water, Air, & Soil Pollution, 232(5), 196.

    Article  Google Scholar 

  • Hallare, A. V., Kosmehl, T., Schulze, T., Hollert, H., Köhler, H.-R., & Triebskorn, R. (2005). Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. Science of the Total Environment, 347(1–3), 254–271.

    Article  CAS  Google Scholar 

  • Han, Y., Zhu, L., Wang, J., Wang, J., Xie, H., & Zhang, S. (2014). Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin. Ecotoxicology and Environmental Safety, 107, 214–219.

    Article  CAS  Google Scholar 

  • Handa, S., & Jadhav, R. (2016). Status of heavy metal pollution in Mithi River: Then and now. International Journal of Research in Engineering and Science, 4(1), 62–68.

    Google Scholar 

  • Hariri, M., Mirvaghefi, A., Farahmand, H., Taghavi, L., & Shahabinia, A.-R. (2018). In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario). Environmental Toxicology and Pharmacology, 58, 59–69.

    Article  CAS  Google Scholar 

  • Henderson, L., Wolfreys, A., Fedyk, J., Bourner, C., & Windebank, S. (1998). The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Oxford University Press and the United Kingdom Environmental Mutagen Society.

  • Hill, A. J., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1), 6–19.

    Article  CAS  Google Scholar 

  • Kannan, K., Fundamentals of environmental pollution, S. Chand and Company Ltd., New Delhi, 1991. Retrieved April 10, 2023, from http://www.sciepub.com/reference/298132

  • Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310.

    Article  CAS  Google Scholar 

  • Klean Environmental Consultants Pvt. Ltd., Mumbai (2004). Survey Report on Mithi River Water Pollution and Recommendations for its Control. Report Ref. No. 0407/109, submitted to Maharashtra Pollution Control Board (MPCB), Mumbai.

  • Kosmehl, T., Hallare, A. V., Braunbeck, T., & Hollert, H. (2008). DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 650(1), 1–14.

    Article  CAS  Google Scholar 

  • Kumaravel, T. S., & Jha, A. N. (2006). Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 605(1–2), 7–16.

    Article  CAS  Google Scholar 

  • Li, Q., Chen, L., Liu, L., & Wu, L. (2016). Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research, 23, 4908–4918.

    Article  CAS  Google Scholar 

  • Lovinskaya, A., Kolumbayeva, S., Begimbetova, D., Suvorova, M., Bekmagambetova, N., & Abilev, S. (2021). Toxic and genotoxic activity of river waters of the Kazakhstan. Acta Ecologica Sinica, 41(6), 499–511.

    Article  Google Scholar 

  • Martínez-Quezada, R., González-Castañeda, G., Bahena, I., Domínguez, A., Domínguez-López, P., Casas, E., Betancourt, M., Casillas, F., Rodríguez, J. J., & Álvarez, L. (2021). Effect of perfluorohexane sulfonate on pig oocyte maturation, gap-junctional intercellular communication, mitochondrial membrane potential and DNA damage in cumulus cells in vitro. Toxicology in Vitro, 70, 105011.

    Article  Google Scholar 

  • Merola, C., Lai, O., Conte, A., Crescenzo, G., Torelli, T., Alloro, M., & Perugini, M. (2020a). Toxicological assessment and developmental abnormalities induced by butylparaben and ethylparaben exposure in zebrafish early-life stages. Environmental Toxicology and Pharmacology, 80, 103504. https://doi.org/10.1016/j.etap.2020.103504

    Article  CAS  Google Scholar 

  • Merola, C., Perugini, M., Conte, A., Angelozzi, G., Bozzelli, M., & Amorena, M. (2020b). Embryotoxicity of methylparaben to zebrafish (Danio rerio) early-life stages. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 236, 108792.

    CAS  Google Scholar 

  • Mir, M. I., Khan, S., Bhat, S. A., Reshi, A. A., Shah, F. A., Balki, M. H., & Manzoor, R. (2014). Scenario of genotoxicity in fishes and its impact on fish industry. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(6), 2319–2402.

    Article  Google Scholar 

  • Mohite, R. A., & Joya, L. K. (2021). A case study report on waste water management & sewage disposal in Mumbai Suburban Region. Journal of Emerging Technologies and Innovative Research, 8(4), 404-431.

  • Mu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., Li, X., & Wang, C. (2013). Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environmental Pollution, 175, 147–157.

    Article  CAS  Google Scholar 

  • Muramoto, S. (1981). Vertebral column damage and decrease of calcium concentration in fish exposed experimentally to cadmium. Environmental Pollution Series A, Ecological and Biological, 24(2), 125–133.

    Article  CAS  Google Scholar 

  • Nagarsekar, A. S., & Kakde, U. B. (2014). 4. A study of physico-chemical parameters of Mithi River water in Mumbai metropolis. International Research Journal of Chemistry, 5, 24-42.

    Google Scholar 

  • Nagel, R. (2002). DarT: The embryo test with the Zebrafish Danio rerio–a general model in ecotoxicology and toxicology. Altex, 19, 38–48.

    Google Scholar 

  • Nagpure, N. S., Srivastava, R., Kumar, R., Dabas, A., Kushwaha, B., & Kumar, P. (2017). Mutagenic, genotoxic and bioaccumulative potentials of tannery effluents in freshwater fishes of River Ganga. Human and Ecological Risk Assessment: An International Journal, 23(1), 98–111.

    Article  CAS  Google Scholar 

  • Namrata, S. (2010). Physicochemical properties of polluted water of river Ganga at Varanasi. International Journal of Energy and Environment, 1(5), 823–832.

    CAS  Google Scholar 

  • National Environmental Engineering Research Institute (NEERI) - January 2011 – A report Current status of Mithi River and possible solutions (Topsheet No. 47 A/16).

  • OECD. (2018). Organization for Economic Cooperation and Development draft guideline for Testing of Chemicals TG 203. France.

    Google Scholar 

  • OECD T N. (2013). 236: Fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals, Section, 2, 1–22.

    Google Scholar 

  • Osman, A. G., Abuel-Fadl, K. Y., & Kloas, W. (2012). In situ evaluation of the genotoxic potential of the river Nile: II. Detection of DNA strand-breakage and apoptosis in Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Mutation Research/Genetic Toxicology and Environmental. Mutagenesis, 747(1), 14–21.

    CAS  Google Scholar 

  • Osman, A. G., Wuertz, S., Mekkawy, I. A., Exner, H.-J., & Kirschbaum, F. (2007). Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environmental Toxicology: An International Journal, 22(4), 375–389.

    Article  CAS  Google Scholar 

  • Zaware, A., Kaur, S., & Kumar, R. (2014). Assessment of spatio-temporal variations in physico-chemical characteristics of Mithi River water quality of Mumbai. India. https://doi.org/10.13140/RG.2.1.3837.3526

    Article  Google Scholar 

  • Park, H., Lee, J.-Y., Park, S., Song, G., & Lim, W. (2019). Developmental toxicity and angiogenic defects of isoxazole exposed zebrafish (Danio rerio) larvae. Aquatic Toxicology, 217, 105324.

    Article  CAS  Google Scholar 

  • Pereira, A. C., Gomes, T., Machado, M. R. F., & Rocha, T. L. (2019). The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: From morphological to molecular approach. Environmental Pollution, 252, 1841–1853.

    Article  CAS  Google Scholar 

  • Rocha, P. S., Luvizotto, G. L., Kosmehl, T., Boettcher, M., Storch, V., Braunbeck, T., & Hollert, H. (2009). Sediment genotoxicity in the Tietê River (São Paulo, Brazil): In vitro comet assay versus in situ micronucleus assay studies. Ecotoxicology and Environmental Safety, 72(7), 1842–1848.

    Article  CAS  Google Scholar 

  • Russo, C., Rocco, L., Morescalchi, M. A., & Stingo, V. (2004). Assessment of environmental stress by the micronucleus test and the Comet assay on the genome of teleost populations from two natural environments. Ecotoxicology and Environmental Safety, 57(2), 168–174.

    Article  CAS  Google Scholar 

  • SanJuan-Reyes, N., Gómez-Oliván, L. M., Pérez-Pastén Borja, R., Luja-Mondragón, M., Orozco-Hernández, J. M., Heredia-García, G., Islas-Flores, H., Galar-Martínez, M., & Escobar-Huérfano, F. (2020). Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. Environmental Research, 182, 108992. https://doi.org/10.1016/j.envres.2019.108992

    Article  CAS  Google Scholar 

  • Scalon, M. C. S., Rechenmacher, C., Siebel, A. M., Kayser, M. L., Rodrigues, M. T., Maluf, S. W., Rodrigues, M., & Silva, L. B. (2010). Evaluation of Sinos River water genotoxicity using the comet assay in fish. Brazilian Journal of Biology, 70, 1217–1222. https://doi.org/10.1590/S1519-69842010000600011

    Article  CAS  Google Scholar 

  • Schnurstein, A., & Braunbeck, T. (2001). Tail moment versus tail length—Application of an in vitro version of the comet assay in biomonitoring for genotoxicity in native surface waters using primary hepatocytes and gill cells from zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 49(2), 187–196.

    Article  CAS  Google Scholar 

  • Shao, Y., Xiao, H., Di Paolo, C., Deutschmann, B., Brack, W., Hollert, H., & Seiler, T. B. (2019). Integrated zebrafish-based tests as an investigation strategy for water quality assessment. Water research, 150, 252–260.

    Article  CAS  Google Scholar 

  • Shirani, M., Mirvaghefi, A., Farahmand, H., & Abdollahi, M. (2012). Biomarker responses in mudskipper (Periophthalmus waltoni) from the coastal areas of the Persian Gulf with oil pollution. Environmental Toxicology and Pharmacology, 34(3), 705–713.

    Article  CAS  Google Scholar 

  • Singare, P. (2016). Carcinogenic and endocrine disrupting PAHs in the aquatic ecosystem of India. Environmental Monitoring and Assessment, 188, 1–25. https://doi.org/10.1007/s10661-016-5597-4

    Article  CAS  Google Scholar 

  • Singare, P. U. (2012). Studies on accumulation of NBDSW in Mithi River of Mumbai. Asian Journal of Environment and Disaster Management, 4(3).

  • Singare, P. U. (2015). Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: Assessment of sources, toxicity risk and biological impact. Marine Pollution Bulletin, 101(1), 232–242.

    Article  CAS  Google Scholar 

  • Singare, P. U., Mishra, R. M., & Trivedi, M. P. (2011). Assessing the health of sediment ecosystem of Mithi River of Mumbai: Use of physico-chemical measurements. Resources and Environment, 1(1), 32–41.

    Google Scholar 

  • Singare, P. U., Mishra, R. M., & Trivedi, M. P. (2012a). Heavy metal pollution in Mithi River of Mumbai. Frontiers in Science, 2(3), 28–36.

    Article  Google Scholar 

  • Singare, P. U., Mishra, R. M., & Trivedi, M. P. (2012b). Sediment contamination due to toxic heavy metals in Mithi River of Mumbai. Advances in Analytical Chemistry of Scientific & Academic Publishing, 2(3), 14–24.

    Article  Google Scholar 

  • Singare, P. U., Mishra, R. M., Trivedi, M. P., & Dagli, D. V. (2012). Aquatic pollution in Mithi River of Mumbai: Assessment of physico-chemical parameters. Interdisciplinary Environmental Review, 13(4), 245–268.

    Article  Google Scholar 

  • Sogbanmu, T. O., Nagy, E., Phillips, D. H., Arlt, V. M., Otitoloju, A. A., & Bury, N. R. (2016). Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos. Environmental Science and Pollution Research, 23, 14489–14501.

    Article  CAS  Google Scholar 

  • Sonule, K. K., & Bhave, P. P. (2021). In-situ treatment of urban water body–Mithi River. Journal of Indian Water Works Association, 141-145.

    Google Scholar 

  • Tiwari, A. (2019). Governance of an Urban River The case of MITHI, a forgotten river in the city (Doctoral dissertation).

  • VanLandeghem, M. M., Meyer, M. D., Cox, S. B., Sharma, B., & Patiño, R. (2012). Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas. Water Research, 46(20), 6638–6651.

    Article  CAS  Google Scholar 

  • Wang, D., Yang, L., Wang, J., Hu, G., Liu, Z., Yan, D., Serikuly, N., Alpyshov, E. T., Demin, K. A., Galstyan, D. S., Strekalova, T., de Abreu, M. S., Amstislavskaya, T. G., & Kalueff, A. V. (2020). Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicology and Teratology, 79, 106881. https://doi.org/10.1016/j.ntt.2020.106881

    Article  CAS  Google Scholar 

  • Wessel, N., Rousseau, S., Caisey, X., Quiniou, F., & Akcha, F. (2007). Investigating the relationship between embryotoxic and genotoxic effects of benzo [a] pyrene, 17α-ethinylestradiol, and endosulfan on Crassostrea gigas embryos. Aquatic Toxicology, 85(2), 133–142.

    Article  CAS  Google Scholar 

  • Westerfield, M. (2000). The zebrafish book: A guide for the laboratory use of zebrafish. https://zfin.org/zf_info/zfbook/zfbk.html

  • Whitacre, D. M. (2008). Reviews of environmental contamination and toxicology (Vol. 202). Springer.

  • Zezza, D., Tait, S., Della Salda, L., Amorena, M., Merola, C., & Perugini, M. (2019). Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE-47, PBDE-99 and PBDE-209 on zebrafish embryos. Ecotoxicology and Environmental Safety, 183, 109566.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, Q., Chen, L., Zhang, A., He, J., Wen, Z., & Wu, L. (2015). Toxicity of surface water from Huangpu River to luminous bacteria (Vibrio qinghaiensis SP. Q67) and zebrafish (Danio rerio) embryos. Ecotoxicology and Environmental Safety, 112, 137–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Harshavarthini Matheshwaran was the principal investigator and had responsibility for the experimental setup, data investigation, and original draft preparation; Naresh S. Nagpure and Mujahidkhan A. Pathan conceived the original idea and made a substantial contribution to the design of the study, conceptualization, supervision, and statistical analysis; Nalini Poojary and Saurav Kumar contributed to the design of the study and interpretation of results; Nikita Gurphale, S.V. Sai Varshini, and Riya Kumari contributed to the data analysis; all authors contributed to substantially revising the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to N. S. Nagpure.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshavarthini, M., Pathan, M.A., Poojary, N. et al. Assessment of toxicity potential of neglected Mithi River water from Mumbai megacity, India, in zebrafish using embryotoxicity, teratogenicity, and genotoxicity biomarkers. Environ Monit Assess 195, 950 (2023). https://doi.org/10.1007/s10661-023-11542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11542-w

Keywords

Navigation