Skip to main content
Log in

Measuring tree diameter using a LiDAR-equipped smartphone: a comparison of smartphone- and caliper-based DBH

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tree diameter measurement is one of the most important stages of forest inventories to assess growing stock, aboveground biomass, and landscape restoration options, among others. This study investigates the accuracy of measuring tree diameters using a Light Detection and Ranging (LiDAR)–equipped smartphone vs. a normal caliper (reference data) and the opportunity to use low-cost smartphone-based applications in forest inventories. To estimate the diameter at breast height (DBH) of single trees, we used a smartphone with a third-party app that automatically analyzed three-dimensional (3D) point clouds. For two different measurement techniques, we compared the two measurement techniques based on DBH data from 55 Calabrian pine (Pinus brutia Ten.) and 50 oriental plane (Platanus orientalis L.) trees using the paired-sample t-test and Wilcoxon signed-rank test. Mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), percent bias (PBIAS), and coefficient of determination (R2) were used as precision and error statistics. Statistical differences were observed between the reference and smartphone-based DBH according to the paired-sample t-test and Wilcoxon signed-rank test. The R2 values obtained were determined as 0.91, 0.88, and 0.88 for Calabrian pine, oriental plane, and all tree species (105 trees), respectively. In addition to the overall accuracy performance of the comparison between reference and estimations, MAE, MSE, RMSE, and PBIAS values for the DBH of 105 tree stems were calculated as 1.56 cm, 5.42 cm, 2.33 cm, and − 5.10%, respectively. The estimation accuracies increased in regular stem forms compared with forked stems particularly observed on plane trees. Further experiments are needed to investigate the uncertainties associated with trees of different stem forms, species (coniferous or deciduous), different work environments, and different types of LiDAR and LiDAR-based app scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Akgül, M., Yurtseven, H., Akburak, S., & Çoban, S. (2016). Yersel lazer tarayıcı sistemler ile kentsel yeşil alanlarda bazı ağaç parametrelerinin belirlenmesi [Determination of some tree parameters using terrestrial laser scanner in urban green areas]. Journal of the Faculty of Forestry Istanbul University, 66(2), 445–458. https://doi.org/10.17099/jffiu.96359 in Turkish

  • Apple In. (2021). Technical specification of iPhone 13 Pro Max. Apple Inc.,. Retrieved December 8, 2022, from https://www.apple.com/iphone-13-pro/specs/

  • Balenović, I., Liang, X., Jurjević, L., Hyyppä, J., Seletković, A., & Kukko, A. (2020). Hand-held personal laser scanning – Current status and perspectives for forest inventory application. Croatian Journal of Forest Engineering, 42(1), 165–183. https://doi.org/10.5552/crojfe.2021.858

    Article  Google Scholar 

  • Binot, J.-M., Pothier, D., & Lebel, J. (1995). Comparison of relative accuracy and time requirement between the caliper, the diameter tape and an electronic tree measuring fork. The Forestry Chronicle, 71(2), 197–200. https://doi.org/10.5558/tfc71197-2

    Article  Google Scholar 

  • Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2022). YOLACT++ better real-time instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2), 1108–1121. https://doi.org/10.1109/TPAMI.2020.3014297

    Article  Google Scholar 

  • Bruggisser, M., Hollaus, M., Otepka, J., & Pfeifer, N. (2020). Influence of ULS acquisition characteristics on tree stem parameter estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 28–40. https://doi.org/10.1016/j.isprsjprs.2020.08.002

    Article  Google Scholar 

  • Celes, C. H. S., de Araujo, R. F., Emmert, F., Lima, A. J. N., & Campos, M. A. A. (2019). Digital approach for measuring tree diameters in the Amazon forest. Floresta e Ambiente, 26(1). https://doi.org/10.1590/2179-8087.038416

  • Chen, S., Liu, H., Feng, Z., Shen, C., & Chen, P. (2019). Applicability of personal laser scanning in forestry inventory. PLoS One, 14(2). https://doi.org/10.1371/journal.pone.0211392

  • Clark, N. A., Wynne, R. H., & Schmoldt, D. L. (2000). A review of past research on dendrometers. Forest Science, 46(4), 570–576.

  • Dassot, M., Constant, T., & Fournier, M. (2011). The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Annals of Forest Science, 68(5), 959–974. https://doi.org/10.1007/s13595-011-0102-2

    Article  Google Scholar 

  • Drew, D. M., & Downes, G. M. (2009). The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia, 27(2), 159–172. https://doi.org/10.1016/j.dendro.2009.06.008

    Article  Google Scholar 

  • Fan, W., Liu, H., Xu, Y., & Lin, W. (2021). Comparison of estimation algorithms for individual tree diameter at breast height based on hand-held mobile laser scanning. Scandinavian Journal of Forest Research, 36(6), 460–473. https://doi.org/10.1080/02827581.2021.1973554

    Article  Google Scholar 

  • Fan, Y., Feng, Z., Mannan, A., Khan, T. U., Shen, C., & Saeed, S. (2018). Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111845

  • Gao, Q., & Kan, J. (2022). Automatic forest DBH measurement based on structure from motion photogrammetry. Remote Sensing, 14(9), 2064. https://doi.org/10.3390/rs14092064

    Article  Google Scholar 

  • GDF, (2019). Republic of Turkey General Directorate Forest, Communiqué on Production of Wood-Based Forest Products, Ankara, Turkey

  • Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., & Chirici, G. (2018). Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing, 51(1), 795–807. https://doi.org/10.1080/22797254.2018.1482733

    Article  Google Scholar 

  • Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., & Nothdurft, A. (2021). Measurement of forest inventory parameters with apple iPad pro and integrated LiDAR technology. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163129

  • Gusmão, G. F., Barbosa, C. R. H., & Raposo, A. B. (2020). Development and validation of LiDAR sensor simulators based on parallel raycasting. Sensors (switzerland), 20(24), 1–18. https://doi.org/10.3390/s20247186

    Article  Google Scholar 

  • Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J., et al. (2001). Interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience, 51(9), 765–779. https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2

    Article  Google Scholar 

  • Heinzel, J., & Huber, M. O. (2017). Tree stem diameter estimation from volumetric TLS image data. Remote Sensing, 9(6). https://doi.org/10.3390/rs9060614

  • Huang, H., Li, Z., Gong, P., Cheng, X., Clinton, N., Cao, C., et al. (2011). Automated methods for measuring DBH and tree heights with a commercial scanning LiDAR. Photogrammetric Engineering and Remote Sensing, 77(3), 219–227. https://doi.org/10.14358/PERS.77.3.219

  • Hyyppä, J., Virtanen, J. P., Jaakkola, A., Yu, X., Hyyppä, H., & Liang, X. (2017). Feasibility of Google Tango and Kinect for crowdsourcing forestry information. Forests, 9(1). https://doi.org/10.3390/f9010006

  • Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports. https://doi.org/10.1007/s40725-019-00094-3

    Article  Google Scholar 

  • Jurjević, L., Liang, X., Gašparović, M., & Balenović, I. (2020). Is field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 227–241. https://doi.org/10.1016/j.isprsjprs.2020.09.014

    Article  Google Scholar 

  • Kędra, K., & Barbeito, I. (2022). Estimation of individual Norway spruce crown metrics using a smartphone device. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90(2), 123–134. https://doi.org/10.1007/s41064-022-00201-3

    Article  Google Scholar 

  • Kovácsová, P., & Antalová, M. (2010). Precision forestry-Definition and technologies. Sumarski List, 34(11-12), 603–610.

  • Liang, X., Jaakkola, A., Wang, Y., Hyyppä, J., Honkavaara, E., Liu, J., & Kaartinen, H. (2014a). The use of a hand-held camera for individual tree 3D mapping in forest sample plots. Remote Sensing, 6(7), 6587–6603. https://doi.org/10.3390/rs6076587

    Article  Google Scholar 

  • Liang, X., Kukko, A., Kaartinen, H., Hyyppä, J., Yu, X., Jaakkola, A., & Wang, Y. (2014b). Possibilities of a personal laser scanning system for forest mapping and ecosystem services. Sensors (switzerland), 14(1), 1228–1248. https://doi.org/10.3390/s140101228

    Article  Google Scholar 

  • Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., et al. (2018). International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 137–179. https://doi.org/10.1016/j.isprsjprs.2018.06.021

    Article  Google Scholar 

  • Liu, S., Bitterlich, W., Cieszewski, C. J., & Zasada, M. J. (2011). Comparing the use of three dendrometers for measuring diameters at breast height. Southern Journal of Applied Forestry, 35(3), 136–141. https://doi.org/10.1093/sjaf/35.3.136

    Article  Google Scholar 

  • Liu, C., Xing, Y., Duanmu, J., & Tian, X. (2018). Evaluating different methods for estimating diameter at breast height from terrestrial laser scanning. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040513

  • Marzulli, M. I., Raumonen, P., Greco, R., Persia, M., & Tartarino, P. (2020). Estimating tree stem diameters and volume from smartphone photogrammetric point clouds. Forestry, 93(3), 411–429. https://doi.org/10.1093/forestry/cpz067

    Article  Google Scholar 

  • McGlade, J., Wallace, L., Reinke, K., & Jones, S. (2022). The potential of low-cost 3D imaging technologies for forestry applications: Setting a research agenda for low-cost remote sensing inventory tasks. Forests, 13(2), 204. https://doi.org/10.3390/f13020204

    Article  Google Scholar 

  • Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., et al. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104. https://doi.org/10.1016/j.jag.2021.102512

  • Moran, L. A., & Williams, R. A. (2002). Comparison of three dendrometers in measuring diameter at breast height. Northern Journal of Applied Forestry, 19(1), 28–33. https://doi.org/10.1093/njaf/19.1.28

    Article  Google Scholar 

  • Pace, R., Masini, E., Giuliarelli, D., Biagiola, L., Tomao, A., Guidolotti, G., et al. (2022). Tree measurements in the urban environment: Insights from traditional and digital field instruments to smartphone applications. Arboriculture & Urban Forestry, 48(2), 113–123. https://doi.org/10.48044/jauf.2022.009

  • Pueschel, P., Newnham, G., Rock, G., Udelhoven, T., Werner, W., & Hill, J. (2013). The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 44–56. https://doi.org/10.1016/j.isprsjprs.2012.12.001

    Article  Google Scholar 

  • Putra, B. T. W., Ramadhani, N. J., Soedibyo, D. W., Marhaenanto, B., Indarto, I., & Yualianto, Y. (2021). The use of computer vision to estimate tree diameter and circumference in homogeneous and production forests using a non-contact method. Forest Science and Technology, 17(1), 32–38. https://doi.org/10.1080/21580103.2021.1873866

    Article  Google Scholar 

  • Shimizu, K., Nishizono, T., Kitahara, F., Fukumoto, K., & Saito, H. (2022). Integrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan. International Journal of Applied Earth Observation and Geoinformation, 106. https://doi.org/10.1016/j.jag.2021.102658

  • Song, C., Yang, B., Zhang, L., & Wu, D. (2021). A handheld device for measuring the diameter at breast height of individual trees using laser ranging and deep-learning based image recognition. Plant Methods, 17(1), 67. https://doi.org/10.1186/s13007-021-00748-z

    Article  Google Scholar 

  • Surový, P., Yoshimoto, A., & Panagiotidis, D. (2016). Accuracy of reconstruction of the tree stem surface using terrestrial close-range photogrammetry. Remote Sensing, 8(2). https://doi.org/10.3390/rs8020123

  • Tatsumi, S., Yamaguchi, K., & Furuya, N. (2022). ForestScanner : A mobile application for measuring and mapping trees with LiDAR ‐equipped iPhone and iPad . Methods in Ecology and Evolution, 2021.12.11.472207. https://doi.org/10.1111/2041-210x.13900

  • Tischendorf. (1943). Der Einfluss der Exzentrizität der Schaftquerflächen auf das Messungsergebnis bei Bestandesmassenermittlungen durch Kluppung. Centralblatt für das gesamte Forstwesen. 69, 87–94.

  • Trochta, J., Kruček, M., Vrška, T., & Kraâl, K. (2017). 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS One, 12(5). https://doi.org/10.1371/journal.pone.0176871

  • Ucar, Z., Değermenci, A. S., Zengin, H., & Bettinger, P. (2022). Evaluating the accuracy of remote dendrometers in tree diameter measurements at breast height. Croatian Journal of Forest Engineering, 43(1), 185–197. https://doi.org/10.5552/crojfe.2022.1016

    Article  Google Scholar 

  • Vastaranta, M., Latorre, E. G., Luoma, V., Saarinen, N., Holopainen, M., & Hyyppä, J. (2015). Evaluation of a smartphone app for forest sample plot measurements. Forests, 6(4), 1179–1194. https://doi.org/10.3390/f6041179

    Article  Google Scholar 

  • Vatandaşlar, C., & Zeybek, M. (2020). Application of handheld laser scanning technology for forest inventory purposes in the NE Turkey. Turkish Journal of Agriculture and Forestry, 44(3), 229–242. https://doi.org/10.3906/tar-1903-40

    Article  Google Scholar 

  • Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkänen, J., et al. (2012). Comparative testing of single-tree detection algorithms under different types of forest. Forestry. https://doi.org/10.1093/forestry/cpr051

    Article  Google Scholar 

  • Vogt, M., Rips, A., & Emmelmann, C. (2021). Comparison of iPad Pro®’s LiDAR and TrueDepth capabilities with an industrial 3D scanning solution. Technologies, 9(2), 25. https://doi.org/10.3390/technologies9020025

    Article  Google Scholar 

  • Wang, F., Heenkenda, M. K., & Freeburn, J. T. (2022). Estimating tree diameter at breast height (DBH) using an iPad Pro LiDAR sensor. Remote Sensing Letters, 13(6), 568–578. https://doi.org/10.1080/2150704X.2022.2051635

    Article  Google Scholar 

  • Wang, X., Singh, A., Pervysheva, Y., Lamatungga, K. E., Murtinová, V., Mukarram, M., et al. (2021). Evaluation of iPad Pro 2020 LIDAR for estimating tree diameters in urban forest. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. 8, pp. 105–110). https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-105-2021

  • White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote sensing technologies for enhancing forest inventories: A review. Canadian Journal of Remote Sensing, 42(5), 619–641. https://doi.org/10.1080/07038992.2016.1207484

    Article  Google Scholar 

  • Wieser, M., Mandlburger, G., Hollaus, M., Otepka, J., Glira, P., & Pfeifer, N. (2017). A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111154

  • Wu, X., Zhou, S., Xu, A., & Chen, B. (2019). Passive measurement method of tree diameter at breast height using a smartphone. Computers and Electronics in Agriculture, 163, 104875. https://doi.org/10.1016/j.compag.2019.104875

    Article  Google Scholar 

  • Xie, Y., Zhang, J., Chen, X., Pang, S., Zeng, H., & Shen, Z. (2020). Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. Forest Ecosystems, 7(1), 33. https://doi.org/10.1186/s40663-020-00237-0

    Article  Google Scholar 

  • Xu, D., Wang, H., Xu, W., Luan, Z., & Xu, X. (2021). LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests, 12(5). https://doi.org/10.3390/f12050550

  • Yurtseven, H., Akgul, M., Coban, S., & Gulci, S. (2019a). Determination and accuracy analysis of individual tree crown parameters using UAV based imagery and OBIA techniques. Measurement: Journal of the International Measurement Confederation. https://doi.org/10.1016/j.measurement.2019.05.092

    Article  Google Scholar 

  • Yurtseven, H., Çoban, S., Akgül, M., & Akay, A. O. (2019b). Individual tree measurements in a planted woodland with terrestrial laser scanner. Turkish Journal of Agriculture and Forestry, 43(2), 192–208. https://doi.org/10.3906/tar-1805-5

    Article  Google Scholar 

  • Zhang, S., Han, F., & Bogus, S. M. (2020). Building footprint and height information extraction from airborne LiDAR and aerial imagery. In Construction Research Congress 2020: Computer Applications - Selected Papers from the Construction Research Congress 2020 (pp. 326–335). https://doi.org/10.1061/9780784482865.035

  • Zhao, X., Corral-Rivas, J., Zhang, C., Temesgen, H., & Gadow, K. V. (2014). Forest observational studies-an essential infrastructure for sustainable use of natural resources. Forest Ecosystems. https://doi.org/10.1186/2197-5620-1-8

    Article  Google Scholar 

  • Zhou, S., He, G., Kang, F., Li, W., Kan, J., & Zheng, Y. (2019). Extracting diameter at breast height with a handheld mobile LiDAR system in an outdoor environment. Sensors (Switzerland), 19(14). https://doi.org/10.3390/s19143212

Download references

Acknowledgements

The authors thank the editor and the anonymous reviewers for their constructive comments that helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sercan Gülci: investigation, conceptualization, methodology, writing—original draft, writing—reviewing and editing. Huseyin Yurtseven: investigation, software, writing—reviewing and editing. Anil Orhan Akay: investigation, supervision, writing—reviewing and editing. Mustafa Akgul: investigation, supervision, methodology, software writing—reviewing and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Anil Orhan Akay.

Ethics declarations

All authors have read, have understood, and have complied as applicable with the statement on “Ethical Responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülci, S., Yurtseven, H., Akay, A.O. et al. Measuring tree diameter using a LiDAR-equipped smartphone: a comparison of smartphone- and caliper-based DBH. Environ Monit Assess 195, 678 (2023). https://doi.org/10.1007/s10661-023-11366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11366-8

Keywords

Navigation