Skip to main content
Log in

Efficiency evaluation of titanium oxide nanocomposite membrane in adsorption of chromium from oil effluents

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reverse osmosis and nanofiltration (NF) are the essential physical separation technologies used to remove contaminants from liquid streams. A hybrid of nanofiltration and forward osmosis (FO) was used to increase the removal efficiency of heavy metals in synthesized oil effluents. Thin-film nanocomposite (TFN) membranes were synthesized by applying surface polymerization on a polysulfone substrate to use in the forward osmosis process. The impact of different membrane fabrication conditions such as time, temperature, and pressure on effluent flux, the effect of different concentrations of the heavy metal solution on adsorption rate and sedimentation rate, the impact of TiO2 nanoparticles on the performance and structure of forward osmosis membranes were investigated. The morphology, composition, and properties of TiO2 nanocomposites made by the infrared spectrometer and X-ray diffraction (XRD) were studied. Kinetic modeling and Langmuir, Freundlich, and Tamkin relationships were used to draw adsorption isotherms and evaluate adsorption equilibrium data. The results indicated that pressure and temperature directly affect water outlet flux, and time affects it indirectly. Evaluating the isothermal relationships revealed that chromium adsorption from the TFN 0.05 ppm membrane and thin-film composite (TFC) membrane follows the Langmuir model with correlation coefficients of 0.996 and 0.995, respectively. The significant removal of heavy metals and the acceptable amount of water flux demonstrated the appropriate potential of the titanium oxide nanocomposite membrane, which can be used as an effective adsorbent to remove chromium from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abbasi Geravand, M. H., Saljoughi, S. E., Mousavi, M., & Kiani, S. (2021). Biodegradable polycaprolactone/MXene nanocomposite nanofiltration membranes for the treatment of dye solutions. Journal of the Taiwan Institute of Chemical Engineers, 128, 124–139. https://doi.org/10.1016/j.jtice.2021.08.048

    Article  CAS  Google Scholar 

  • Akintayo, C. O., Aremu, O. H., Igboama, W. N., Nelana, S. M., & Ayanda, O. S. (2021). Performance evaluation of ultra-violet light and iron oxide nanoparticles for the treatment of synthetic petroleumwastewater: Kinetics of COD removal. Materials, 14(17), 5012. https://doi.org/10.3390/ma14175012

    Article  CAS  Google Scholar 

  • Al-Alawi, A. F., & Al-Ameri, M. K. (2017). Treatment of simulated oily wastewater by ultrafiltration and nanofiltration processes. Iraqi Journal of Chemical and Petroleum Engineering, 18(1), 71–85.

    Google Scholar 

  • Alam, S., Ullah, B., Khan, M. S., Rahman, N. U., Khan, L., Shah, L. A., Zekker, I., Burlakovs, J., Kallistova, A., Pimenov, N., Yandri, E., Setyobudi, R. H., Ajani, Y., & Zahoor, M. (2021). Adsorption kinetics and isotherm study of basic red 5 on synthesized silica monolith particles. Water, 13(20), 2803. https://doi.org/10.3390/w13202803

    Article  CAS  Google Scholar 

  • Alammar, A., Park, S. H., Williams, C. J., Derby, B., & Szekely, G. (2020). Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment. Journal of Membrane Science, 603, 118007. https://doi.org/10.1016/j.memsci.2020.118007

  • Albojamal, A., & Vafai, K. (2020). Analysis of particle deposition of nanofluid flow through porous media. International Journal of Heat and Mass Transfer, 161, 120227. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120227

  • Ali, I., Alharbi, O. M. L., AlOthman, A. Z., Alwarthan, A., & Al-Mohaimeed, A. M. (2019). Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. International Journal of Biological Macromolecules, 132, 244–253. https://doi.org/10.1016/j.ijbiomac.2019.03.211

    Article  CAS  Google Scholar 

  • Ali, M. M., Rahman, S., Islam, M. S., Rakib, M. R. J., Hossein, S., Rahman, M. Z., Kormoker, T., Idris, A. M., & Phoungthong, K. (2022). Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. International Journal of Sediment Research, 37(2), 173–187. https://doi.org/10.1016/j.ijsrc.2021.09.002

    Article  Google Scholar 

  • Alosaimi, A. M. (2021). Polysulfone Membranes based hybrid nanocomposites for the adsorptive removal of Hg(II) ions. Polymers (basel), 13(16), 2792. https://doi.org/10.3390/polym13162792

    Article  CAS  Google Scholar 

  • Alqaheem, Y., & Alomair, A. (2020). Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes, 10(2), 33. https://doi.org/10.3390/membranes10020033

    Article  CAS  Google Scholar 

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 3039817. https://doi.org/10.1155/2017/3039817

  • Ayele, A., & Godebo Godet, Y. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021, 7694157. https://doi.org/10.1155/2021/7694157

    Article  CAS  Google Scholar 

  • Dai, F., Zhang, S., Wang, Q., Chen, H., Chen, C., Qian, G., & Yu, Y. (2021). Preparation and characterization of reduced graphene oxide/TiO2blended polyphenylene sulfone antifouling composite membrane with improved photocatalytic degradation performance. Frontiers in Chemistry, 9, 753741. https://doi.org/10.3389/fchem.2021.753741

  • Dkhissi, O., Chatoui, M., El-Hakmaoui, A., Abouri, M., Kadmi, Y., Akssira, M.,  & Souabi, S. (2020). Valorization of Opuntia ficus-indica pads and steel industry FeCl3-rich rejection for removing surfactant and phenol from oil refinery wastewater through coagulation-flocculation. Journal of Health Pollution, 10(28), 201204. https://doi.org/10.5696/156-9614-10.28.201204

  • Elmobarak, W. F., Hameed, B. H., Almomani, F., & Abdullah, A. Z. (2021). A review on the treatment of petroleum refinery wastewater using advanced oxidation processes. Catalysts, 11(7), 782. https://doi.org/10.3390/catal11070782

    Article  CAS  Google Scholar 

  • Emadzadeh, D., Laua, W. J., Rahbari-Sisakht, M., & Daneshfar, A. (2015). A novel thin-film nanocomposite reverse osmosis membrane with a superior anti-organic fouling affinity for water desalination. Desalination, 368, 106–113. https://doi.org/10.1016/j.desal.2014.11.019

    Article  CAS  Google Scholar 

  • Enders, A., North, N., Fensore, C., Velez-Alvarez, J., & Allen, H. (2021). Functional group identification for FTIR spectra using image-based machine learning models. Analytical Chemistry, 93(28), 9711–9718. https://doi.org/10.1021/acs.analchem.1c00867

    Article  CAS  Google Scholar 

  • Esfandian, F., Peyravi, M., Ghoreyshi, A. S., Jahanshahi, M., & Shokuhi Rad, A. (2019). Fabrication of TFC nanofiltration membranes via co-solvent assisted interfacial polymerization for lactose recovery. Arabian Journal of Chemistry, 12(8), 5325–5338. https://doi.org/10.1016/j.arabjc.2017.01.004

    Article  CAS  Google Scholar 

  • Estella Jasper, E., Olatunji Ajibola, V., & Chinedu Onwuka, J. (2020). Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Applied Water Science, 10, 132. 10.1007

  • Etemadi, H., Fonouni, M., & Yegani, R. (2020). Investigation of antifouling properties of polypropylene/TiO2 nanocomposite membrane under different aeration rate in a membrane bioreactor system. Biotechnology Reports, 25, e00414. https://doi.org/10.1016/j.btre.2019.e00414

  • Fujiwara, K. (2017). Metal-support interactions in flame-made metals on metal oxides for environmental applications, Ph.D. thesis, ETH Zurich, Zurich, Switzerland, p 162. https://doi.org/10.3929/ethz-b-000174866

  • Fujiwara, K., Deligiannakis, Y., Skoutelis, C. G., & Pratsinisa, S. E. (2014). Visible-light active black TiO2-Ag/TiOxparticles. Applied Catalysis b: Environmental, 154–155, 9–15.

    Article  Google Scholar 

  • García-Picazo, F. J., Pérez-Sicairo, S., Fimbres-Weihs, G. A., Lin, S. W., Salazar-Gastélum, M. I., & Trujillo-Navarrete, B. (2021). Preparation of thin-film composite nanofiltration membranes doped with N- and Cl-functionalized graphene oxide for water desalination. Polymers, 13(10), 1637. https://doi.org/10.3390/polym13101637

    Article  CAS  Google Scholar 

  • Ghalamchi, L., Aber, S., Vatanpour, V., & Kian, M. (2019). A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor. Journal of Industrial and Engineering Chemistry, 70, 412–426. https://doi.org/10.1016/J.JIEC.2018.11.004

    Article  CAS  Google Scholar 

  • Ghosh, S., Falyouna, O., Malloum, A., Othmani, A., Bornman, C. h., Bedair, H., Onyeaka, H., Al-Sharify, Z., Oluwaseun, J. A., Miri, T., Osagie, C. h., & Ahmadi, S. (2022). A general review on the use of advance oxidation and adsorption processes for the removal of furfural from industrial effluents. Microporous and Mesoporous Materials, 331, 111638. https://doi.org/10.1016/j.micromeso.2021.111638

  • Glose, J. T., Lowry, S. C., & Hausner. B. M. (2021). Examining the utility of continuously quantified Darcy fluxes through the use of periodic temperature time series. Journal of Hydrology, 595(2), 125675. https://doi.org/10.1016/j.jhydrol.2020.125675

  • Gogoi, P., Thakur, A. J., Devi, R. R., Das, B., & Maji, T. K. (2016). A comparative study on sorption of arsenate ions from water by crosslinked chitosan and cross-linked chitosan/MMT nanocomposite. Journal of Environmental Chemical Engineering, 4(4), 4248–4257.

    Article  CAS  Google Scholar 

  • Hossein Shahi Bandari, M. (2012). Nanotechnology applications in surface water, groundwater, and wastewater treatment. Human Environment, 10(22), 24–32. [In Persian].

  • Huang, G., Huo, L., Jin, Y., Yuan, S., Zhao, R., Zhao, J., Li, Z., & Li, Y. (2022). Fluorine-free superhydrophobic PET fabric with high oil flux for oil-water separation. Progress in Organic Coatings, 163, 106671. https://doi.org/10.1016/j.porgcoat.2021.106671

  • Hwang, J. H., Lee, H. J., & Kang, S. W. (2020). Structural control of polysulfone membrane by using dimethylacetamide and water-pressure for water treatment. Korean Journal of Chemical Engineering, 37(9), 1585–1588.

    Article  CAS  Google Scholar 

  • Jafarinejad, S., & Esfahani, M. R. (2021). A review on the nanofiltration process for treatingwastewaters from the petroleum industry. Separations, 8(11), 206. https://doi.org/10.3390/separations8110206

    Article  CAS  Google Scholar 

  • Kahrizi, M., Gonzales, R. R., Kong, L., Matsuyama, H., Lu, P., Lin, J., & Zhao, S. (2022). Significant roles of substrate properties in forward osmosis membrane performance: A review. Desalination, 528, 115615. https://doi.org/10.1016/j.desal.2022.115615

  • Karimi, F., Ayati, A., Tanhaei, B., Sanati, A., Afshar, S., Kardan, A. R., Dabirifar, Z., & Karaman, C. (2022). Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. Environmental Research, 203, 111753. https://doi.org/10.1016/j.envres.2021.111753

  • KhanNiazi, M. B., Jahan, Z., Ahmed, A., Uzair, B., & Mukhtar, A. (2020). Mechanical and thermal properties of carboxymethyl fibers (CMF)/PVA based nanocomposite membranes. Journal of Industrial and Engineering Chemistry, 90, 122–131.

    Article  Google Scholar 

  • Khosravi, M. J., Hosseini, S. M., & Vatanpour, V. (2022). Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal. Chemosphere, 290, 133335. https://doi.org/10.1016/j.chemosphere.2021.133335

  • Lai, G. S., Lau, W. J., Gray, S. R., Matsuura, T., Jamshidi Gohari, R., Subramanian, M. N., Lai, S. O., Ong, C. S., Ismail, A. F., Emazadah, D., & Ghanbari, M. (2016). A practical approach to synthesize polyamide thin-film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. Journal of Materials Chemistry A, 4(11), 4134–4144.

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre, J., García, V., Pongrácz, E., & Keiski, R. L. (2009). The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination, 240, 262–269.

    Article  CAS  Google Scholar 

  • Leaper, S., Abdel-Karim, A., Gad-Allah, T. A., & Gorgojo, P. (2019). Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chemical Engineering Journal, 360, 1330–1340.

    Article  CAS  Google Scholar 

  • Lee, W., Goh, P., Lau, W., Ong, C. S., & Ismail, A. (2019). Antifouling zwitterion embedded forward osmosis thin film composite membrane for highly concentrated oily wastewater treatment. Separation and Purification Technology, 214, 40–50.

    Article  CAS  Google Scholar 

  • Liang, Y., Teng, X., Chen, R., Zhu, Y., Jin, J., & Lin, Sh. (2021). Polyamide nanofiltration membranes from emulsion-mediated interfacial polymerization. ACS ES&T, 1–3, 533–542.

    Article  Google Scholar 

  • Lim, Y. J., Lee, S. M., Wang, R., & Lee, J. (2021). Emerging materials to prepare mixed matrix membranes for pollutant removal in water. Membranes, 11(7), 508. https://doi.org/10.3390/membranes11070508

    Article  CAS  Google Scholar 

  • Lin, C. F., Chung, L. C., Lin, G. Y., Chang, M. C., Lee, C. Y., & Tai, N. H. (2020). Enhancing the efficiency of a forward osmosis membrane with a polydopamine/graphene oxide layer prepared via the modified molecular layer-by-layer method. ACS Omega, 5, 18738–18745.

    Article  CAS  Google Scholar 

  • Liu, X., Yuan, H., Wang, C., Zhang, S., Zhang, L., Liu, X., Liu, F., Zhu, X., Rohani, S., Ching, C., & Lu, J. (2020). A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances. Separation and Purification Technology, 233, 116038. https://doi.org/10.1016/j.seppur.2019.116038

  • Marjani, A., Taghvaie Nakhjiri, A., Adimi, M., Fathinejad Jirandehi, H., & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Scientific Reports, 10, 2049. https://doi.org/10.1038/s41598-020-58472-y

    Article  CAS  Google Scholar 

  • Marie Yap Ang, M. B., Gaces Deang, A. B., Aquino, R. R., Basilia, B. A., Huang, S. H., Lee, K. R., & Lai, J. Y. (2020). Assessing the performance of thin-film nanofiltration membranes with embedded montmorillonites. Membranes, 10, 79. https://doi.org/10.3390/membranes10050079

    Article  CAS  Google Scholar 

  • Misdan, N., Lau, W., Ismail, A., & Matsuura, T. (2013). Formation of thin-film composite nanofiltration membrane: Effect of polysulfone substrate characteristics. Desalination, 329, 9–18.

    Article  CAS  Google Scholar 

  • Mishra, J. R., Samal, S. K., Mohanty, S., & Nayak, S. K. (2021). Polyvinylidene fluoride (PVDF)/Ag@TiO2 nanocomposite membrane with enhanced fouling resistance and antibacterial performance. Materials Chemistry, and Physics, 268, 124723. https://www.x-mol.com/paperRedirect/1395182997126758400

  • Mohammad Gheimasi, M. H., Lorestani, B., Kiani Sadr, M., Cheraghi, M., & Emadzadeh, D. (2021). Synthesis of novel hybrid NF/FO nanocomposite membrane by incorporating black TiO2 nanoparticles for highly efficient heavy metals removal Daryoush. International Journal of Environmental Research, 107, 2411–2502.

    Google Scholar 

  • Mubarak, M. F., Zayed, M. A., Nafady, A., Shahawy, A., & EL,. (2021). Fabrication of hybrid materials based on waste polyethylene/porous activated metakaolinite nanocomposite as an efficient membrane for heavy metal desalination processes. Adsorption Science & Technology, 2021, 6695398. https://doi.org/10.1155/2021/6695398

    Article  CAS  Google Scholar 

  • Naji, L. A., Jassamb, S. H., Yaseen, M. J., Faisala, A. A. H., & Al-Ansarid, N. (2019). Modification of Langmuir model for simulating initial pH and temperature effects on sorption process. Separation Science and Technology, 55(15), 2729–2736.

    Article  Google Scholar 

  • Nawaz, H., Umar, M., Ullah, A., Razzaq, H., Mahmoodzia, K., Liu, X. (2021). Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano filters for treatment of textile effluents. Journal of Hazardous Materials, 403, 123587. https://doi.org/10.1016/j.jhazmat.2020.123587

  • Ndlwana, L., Motsa, M. M., & Mamba, B. B. (2020). A new method for a polyethersulfone-based dopamine-graphene (xGnP-DA/PES) nanocomposite membrane in low/ultra-low pressure reverse osmosis (L/ULPRO) desalination. Membranes, 10(12), 439. https://doi.org/10.3390/membranes10120439

    Article  CAS  Google Scholar 

  • Nguyen, H. T. V., Anh Ngo, T. H., Do, K. D., Nguyen, M. N., Dang, N. T. T., Hong Nguyen, T. T., Vien, V., Anh, Vu., & T,. (2019). Preparation and characterization of a hydrophilic polysulfone membrane using graphene oxide. Journal of Chemistry, 2019, 3164373. https://doi.org/10.1155/2019/3164373

    Article  CAS  Google Scholar 

  • Nguyen, V. H., Nguyen, M., Truong, T., Nguyen, T., Doan, H., & Pham, X. (2020). One-pot preparation of alumina-modified polysulfone-graphene oxide nanocomposite membrane for separation of emulsion-oil from wastewater. Journal of Nanomaterials, 2020, 9087595. https://doi.org/10.1155/2020/9087595

    Article  CAS  Google Scholar 

  • Nithya, R., Gomathi, T., Sudha, P. N., Venkatesan, J., Anil, S., & Kim, S. K. (2016). Removal of Cr(VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite. International Journal of Biological Macromolecules, 87, 545–554.

    Article  CAS  Google Scholar 

  • Noamani, S., Niroomand, S. H., Rastgar, M., & Sadrzadeh, M. (2019). Carbon-based polymer nanocomposite membranes for oily wastewater treatment. npj Clean Water, 20(2), 1–14.

  • Obaid, S. (2020). Langmuir. Freundlich, and Tamkin Adsorption Isotherms and Kinetics for the Removal Aartichoke Tournefortii Straw from Agricultural Waste, Conference Series, 1664, 1–10.

    Google Scholar 

  • Oliveira, D. C. P. M., Farah, I. F., Koch, K., Drewes, J. E., MachadoViana, M., & Amaral, C. M. S. (2022). TiO2-Graphene oxide nanocomposite membranes: A review. Separation, and Purification Technology, 280, 119836. https://doi.org/10.1016/j.seppur.2021.119836

  • Quezada, C., Estay, H., Cassano, A., Troncoso, E., & Ruby-Figueroa, R. (2021). Prediction of permeate flux in ultrafiltration processes: A review of modeling approaches. Membranes, 11(5), 368. https://doi.org/10.3390/membranes11050368

  • Ranjbar, S., Haghdoost, G., & Ebadi, A. (2021). Adsorption of methyl red dye from aqueous solution using gamma alumina nanoparticles. Chemical Methodologies, 5, 190–199.

    CAS  Google Scholar 

  • Roberto, C. M., Luisa Loreti, G. M., & Octavio, G. D. (2021). Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere, 270(107), 2411–2502.

    Google Scholar 

  • Rodríguez, C., Tapia, C., Leiva-Aravena, E., & Leiva, E. (2020). Graphene Oxide–ZnO nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. International Journal of Environmental Research and Public Health, 17(18), 6911. https://doi.org/10.3390/ijerph17186911

  • Romay, M., Diban, N., Rivero, M. J., Urtiaga, A., & Ortiz, I. (2020). Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes. Catalysts, 10(570), 10. https://doi.org/10.3390/catal10050570

    Article  CAS  Google Scholar 

  • Saad, N., Abd Ali, Z., Naji, L., Faisal, A., & Al-Ansari, N. (2020). Development of bi-Langmuir model on the sorption of cadmium onto waste foundry sand: Effects of initial pH and temperature. Environmental Engineering Research, 25(5), 677–684.

    Article  Google Scholar 

  • Saeedi-Jurkuyeh, A., Jafari, A. J., Kalantary, R. R., & Esrafili, A. (2020). A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive & Functional Polymers, 146, 1043. https://doi.org/10.1016/j.reactfunctpolym.2019.104397

    Article  CAS  Google Scholar 

  • Samieirad, S., Mousavi, S. M., & Saljoughi, E. (2022). Novel chlorine resistant thin-film composite forward osmosis membrane: Preparation and performance evaluation in the regeneration of MEG aqueous solution. Chemical Engineering Research and Design, 177, 554–568.

    Article  CAS  Google Scholar 

  • Seah, Q. M., Lau, V. J., Goh, P. S., Tseng, H. H., Wahab, R. A., & Ismail, A. F. (2020). Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: A comprehensive review. Polymers, 12(12), 2817. https://doi.org/10.3390/polym12122817

    Article  CAS  Google Scholar 

  • Shahriari, H. R., & Hosseini, S. S. (2020). Experimental and statistical investigation on fabrication and performance evaluation of structurally tailored PAN nanofiltration membranes for produced water treatment. Chemical Engineering and Processing: Process Intensification, 147, 107766. https://doi.org/10.1016/j.cep.2019.107766

  • Shankar, P., Gomathi, T., Vijayalakshmi, K., & Sudha, P. N. (2014). Comparative studies on the removal of heavy metals ions onto cross-linked chitosan-g-acrylonitrile copolymer. International Journal of Biological Macromolecules, 67, 180–188.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, M., Kumar, N., Janak, M. S., & Maharana, P. A. (2021). A comprehensive review of polymericwastewater purification membranes. Journal of Composites Sciences, 5(6), 162. https://doi.org/10.3390/jcs5060162

  • Sirinupong, T., Youravong, W., Tirawat, D., Lau, W. J., Lai, G. S., & Ismail, A. F. (2018). Synthesis and characterization of thin-film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arabian Journal of Chemistry, 11(7), 1144–1153.

    Article  CAS  Google Scholar 

  • Sun, P., Elgowainy, A., Wang, M., & Han, J. (2018). Henderson RJ (2018) Estimation of US refinery water consumption and allocation to refinery products. Fuel, 221, 542–557.

    Article  CAS  Google Scholar 

  • Tran, D. T., Mendret, J., Méricq, J. P., Faur, C., & Brosillon, S. (2020). Study of permeate flux behavior during photo-filtration using photocatalytic composite membranes. Chemical Engineering and Processing: Process Intensification, 148, 107781. https://doi.org/10.1016/j.cep.2019.107781

  • Upadhyay, U., Sreedhar, I., Singh, S. A., Patel, C. M., & Anitha, K. L. (2021). Recent advances in heavy metal removal by chitosan-based adsorbents. Carbohydrate Polymers, 251, 117000. https://doi.org/10.1016/j.carbpol.2020.117000

  • Van den Mooter, P. R., Dedvukaj, L., & Vankelecom, I. F. J. (2021). Use of ionic liquids and co-solvents for synthesis of thin-film composite membranes. Membranes, 11(4), 297. https://doi.org/10.3390/membranes11040297

    Article  CAS  Google Scholar 

  • Vatanpour, V., Keskin, B., Mehrabani, S. A. N., Karimi, H., Arabi, N., Behroozi, A. H., Shokrollahi-far, A., Yavuzturk Gul, B., & Koyuncu, I. (2022). Investigation of boron nitride/silver/graphene oxide nanocomposite on separation and antibacterial improvement of polyethersulfone membranes in wastewater treatment. Journal of Environmental Chemical Engineering, 10(1), 107035. https://doi.org/10.1016/j.jece.2021.107035

  • Verma, M., Lee, I., Hong, Y., Kumar, V., & Kim, H. (2022). Multifunctional β-cyclodextrin-EDTA-chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environmental Pollution, 292, 118447. https://doi.org/10.1016/j.envpol.2021.118447

  • Wen, Y., Yuan, J., Ma, X., Wang, Sh., & Liu, Y. (2019). Polymeric nanocomposite membranes for water treatment: A review. Environmental Chemistry Letters, 17, 1539–1551.

    Article  CAS  Google Scholar 

  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2012). Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research, 46, 2683–2692.

    Article  CAS  Google Scholar 

  • Xiao, T., Yuan, H., Ma, Q., Guo, X., & Wu, Y. (2019). An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression. International Journal of Biological Macromolecules, 132, 1106–1111.

    Article  CAS  Google Scholar 

  • Yang, H., Bernal, D. E., Franzoi, R. E., Engineer, F. G., Kwon, K., Lee, S., & Grossmann, I. E. (2020). Integration of crude-oil scheduling and refinery planning by Lagrangean decomposition. Computers and Chemical Engineering, 138, 106812. https://doi.org/10.1016/j.compchemeng.2020.106812

  • Yang, K., Yang, Z., Zhang, C., Gu, Y., Wei, J., Li, Z., Ma, C., Yang, X., Song, K., Li, Y., Fang, Q., & Zhou, J. (2021a). Recent Advances in CdS-Based Photocatalysts for CO2 photocatalytic conversion. Chemical Engineering Journal, 418, 129344. https://doi.org/10.1016/j.cej.2021.129344

  • Yang, S., Kuanhong, X., & Yong, Y. (2021b). Offshore oil pollution and prevention measures. E3S Web of Conferences, 271, 02010.

  • Yong, T. J., Munusamy, Y., Ong, Y. T., Yeoh, W. M., & Kchaou, M. (2021). Effect of curing temperature on the properties of latex based membrane for oily wastewater filtration. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/945/1/012032

  • Zaimee, M. Z. A., Sarjadi, M. S., & Rahman, M. L. (2021). Heavy metals removal from water by efficient adsorbents. Water, 13, 2659. https://doi.org/10.3390/w13192659

    Article  CAS  Google Scholar 

  • Zeeshan, M. (2020). Expropriation of Cd(II) from wastewater by ion-selective membrane electrode based on polypyrrole-antimony(III) iodophosphate nanocomposite. Materials Today, 29, 352–362.

    CAS  Google Scholar 

  • Zheng, X., Li, Y., Chen, D., Zheng, A., & Que, Q. (2019). Study on analysis and sedimentation of alumina nanoparticles. International Journal of Environmental Research and Public Health, 16(3), 510. https://doi.org/10.3390/ijerph16030510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and writing—original draft: Mohammad Hossein Mohammad Gheimasi. Investigation, writing—review, and editing: Maryam Kiani Sadr. Investigation, review, and editing: Bahareh Lorestani. Investigation, review, and editing: Mehrdad Cheraghi. Investigation, review, and editing: Daryoush Emadzadeh. Review and editing: Hamta Golkarian. Review and editing: Sedighe Abdollahi.

Corresponding author

Correspondence to Maryam Kiani Sadr.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheimasi, M.H.M., Sadr, M.K., Lorestani, B. et al. Efficiency evaluation of titanium oxide nanocomposite membrane in adsorption of chromium from oil effluents. Environ Monit Assess 195, 668 (2023). https://doi.org/10.1007/s10661-023-11314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11314-6

Keywords

Navigation