Skip to main content
Log in

A study on the efficiency of the sequential batch reactor on the reduction of wastewater pollution from oil washing

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial pollution discharges from washing fuel oils pose severe problems for the environment, particularly for the marine environment receiving these discharges. This work evaluates the biological treatment performance of wastewater (90 m3/h) rich in organic matter with low biodegradability using a sequential batch reactor (SBR) on a laboratory scale. The test using SBR was carried out for 25 days on a continuous cycle of 24 h (30 min of filling, 17 h of aeration, 4 h of anoxia, 2 h of settling, and 30 min of emptying). The feasibility of alternative sources of microorganisms from urban wastewater. The performance of the batch sequencing reactor was evaluated using turbidity, total suspended solids, chemical oxygen demand (COD), biological oxygen demand (BOD), ammonium, nitrate, and phenol as indicators. The results obtained showed that the COD/BOD ratio and the pollutant load vary from one campaign to another. The removal efficiency of COD, BOD, TSS (Total suspended solids), ammonium, nitrate, and phenol varies from 81%, 91%, 72%, 100%, 52%, and 63%. Thus, SBR-type treatment could be an interesting way to reduce pollution due to its simplicity, less space occupation, low energy consumption, and not requiring highly qualified personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abedinzadeh, N., Shariat, M., Monavari, S. M., & Pendashteh, A. (2018). Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. Process Safety and Environmental Protection, 116, 82–91. https://doi.org/10.1016/j.psep.2018.01.015

    Article  CAS  Google Scholar 

  • Ahmed, G. H., Kutty, S. R. M., Isa, M. H. (2011). Petroleum refinery effluent biodegradation in sequencing batch reactor. Int. J. Appl. sci. Technol, 1, 179–183.

  • American Public Health Association. (2005). APHA standard methods for the examination of water and wastewater. Standard methods for the examination of water & wastewater. Washington, DC: American Public Health Association.

  • Aslam, M.T. (2013). Settling of solids in raw wastewater-primary settling tanks and storm water tanks. Verlag der Techn. Univ. Graz, 67–149.

  • Azimi, S. C., Shirini, F., & Pendashteh, A. (2019). Evaluation of COD and turbidity removal from woodchips wastewater using biologically sequenced batch reactor. Process Safety and Environmental Protection, 128, 211–227. https://doi.org/10.1016/j.psep.2019.05.043

    Article  CAS  Google Scholar 

  • Azimi, S. C., Shirini, F., & Pendashteh, A. (2022). Synthesis, characterization, and application of α‐Fe2O3@ TiO2@ SO3H photo‐Fenton catalyst for photocatalytic degradation of biologically pre‐treated wood industry wastewater. Water Environment Research, 94(3), e10695. https://doi.org/10.1002/wer.10695

  • Banerjee, A., & Ghoshal, A. K. (2017). Bioremediation of petroleum wastewater by hyper-phenol tolerant Bacillus cereus: Preliminary studies with laboratory-scale batch process. Bioengineered, 8, 446–450. https://doi.org/10.1080/21655979.2016.1261224

  • Bernet, V., & Spérandio, M. (2009). Principles of nitrifying process in environmental technologies to treat nitrogen pollution–Principles and Engineering. Cervantes FJ.

  • Buayoungyuen, S., Panyapinyopol, B., Fongsatitkul, P., Patthanaissaranukool, W., & Warodomrungsimun, C. (2022). Simultaneous Removal Of Nitrogen, Phosphorus, And Organic Matter From Slaughterhouse Wastewater Using AnA2/O2 SBR and Its economic benefits. EnvironmentAsia, 15(1).

  • Cao, Y., Zhang, C., Rong, H., Zheng, G., & Zhao, L. (2017). The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Research, 108, 86–94. https://doi.org/10.1016/j.watres.2016.10.063

    Article  CAS  Google Scholar 

  • Chen, C., Ming, J., Yoza, B. A., Liang, J., Li, Q. X., Guo, H., Liu, Z., Deng, J., & Wang, Q. (2019). Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresource Technology, 271, 353–359. https://doi.org/10.1016/j.biortech.2018.09.132

    Article  CAS  Google Scholar 

  • Divate, S. B., & Hinge, R. V. (2014). Review on research removal of phenol from wastewater by using different methods. International Journal of Scientific and Research Publications, 5, 1–3.

    Google Scholar 

  • Diya’uddeen, B. H., Pouran, S. R., Aziz, A. R. A., & Daud, W. M. A. W. (2015). Fenton oxidative treatment of petroleum refinery wastewater: Process optimization and sludge characterization. RSC Advances, 5, 68159–68168. https://doi.org/10.1039/c5ra08079g

    Article  CAS  Google Scholar 

  • Dutta, D., Arya, S., & Kumar, S. (2021). Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere, 285, 131245. https://doi.org/10.1016/j.chemosphere.2021.131245

  • Eslami, H., Hematabadi, P. T., Ghelmani, S. V., Vaziri, A. S., & Derakhshan, Z. (2015). The performance of advanced sequencing batch reactor in wastewater treatment plant to remove organic materials and linear alkyl benzene sulfonates. Jundishapur J. Heal. Sci. 7, 33–39. https://doi.org/10.17795/jjhs-29620

  • Freire, D. D. C., Cammarota, M. C., & Sant’Anna, G. L. (2001). Biological treatment of oil field wastewater in a sequencing batch reactor. Environmental Technology, 22(10), 1125–1135. https://doi.org/10.1080/09593332208618203

    Article  CAS  Google Scholar 

  • Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X., & Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresource Technology, 114, 137–143. https://doi.org/10.1016/j.biortech.2012.03.016

    Article  CAS  Google Scholar 

  • Ginni, G., Adishkumar, S., Rajesh Banu, J., & Yogalakshmi, N. (2014). Treatment of pulp and paper mill wastewater by solar photo-Fenton process. Desalination and Water Treatment, 52(13–15), 2457–2464. https://doi.org/10.1080/19443994.2013.794114

    Article  CAS  Google Scholar 

  • Gogina, E., & Quan, T. H. (2018). The assessment of technology SBR in Vietnamese wastewater treatment. In IOP Conference Series: Materials Science and Engineering, 365(2), 022061. IOP Publishing.

  • Gondudey, S., & Chaudhari, P. K. (2020). Treatment of sugar industry effluent through SBR followed by electrocoagulation. Sugar Tech, 22, 303–310. https://doi.org/10.1007/s12355-019-00777-y

    Article  CAS  Google Scholar 

  • Goswami, L., Manikandan, N. A., Dolman, B., Pakshirajan, K., & Pugazhenthi, G. (2018). Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. Journal of Cleaner Production, 196, 1282–1291. https://doi.org/10.1016/j.jclepro.2018.06.070

    Article  CAS  Google Scholar 

  • Guo, J., Yang, Q., Peng, Y., Yang, A., & Wang, S. (2007). Biological nitrogen removal with real-time control using step-feed SBR technology. Enyzme and Microbial Technology, 40, 1564–1569. https://doi.org/10.1016/j.enzmictec.2006.11.001

    Article  CAS  Google Scholar 

  • Islam, M., Xu, Q., & Yuan, Q. (2020). Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. Journal of Environmental Health Science and Engineering, 18(1), 285–295. https://doi.org/10.1007/s40201-020-00466-z

    Article  CAS  Google Scholar 

  • Ismail, Z. Z., & Khudhair, H. A. (2018). Biotreatment of real petroleum wastewater using non-acclimated immobilized mixed cells in spouted bed bioreactor. Biochemical Engineering Journal, 131, 17–23. https://doi.org/10.1016/j.bej.2017.12.005

    Article  CAS  Google Scholar 

  • Jafarinejad, S. (2017). Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chemistry International, 3, 342–350.

    Google Scholar 

  • Johal, E., Walia, B. S., Saini, M. S., & Jha, M. K. (2014). Efficiency assessment and mathematical correlation development between BOD and other parameters in Jalandhar Sewage Treatment. Int J Innov Res Sci Eng Technol, 3, 13088–13096.

    Google Scholar 

  • Kuyukina, M. S., Krivoruchko, A. V., & Ivshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, 10(3), 831. https://doi.org/10.3390/app10030831

    Article  CAS  Google Scholar 

  • Lee, J., Cho, W. C., Poo, K. M., Choi, S., Kim, T. N., Son, E. B., & Chae, K. J. (2020). Refractory oil wastewater treatment by dissolved air flotation, electrochemical advanced oxidation process, and magnetic biochar integrated system. Journal of Water Process Engineering, 36, 101358. https://doi.org/10.1016/j.jwpe.2020.101358

  • Li, C., Liu, S., Ma, T., Zheng, M., & Ni, J. (2019). Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. Chemosphere, 229, 132–141. https://doi.org/10.1016/j.chemosphere.2019.04.185

    Article  CAS  Google Scholar 

  • Li, H., Wu, S., & Yang, C. (2020). Performance and biomass characteristics of SBRs treating high-salinity wastewater at presence of anionic surfactants. International Journal of Environmental Research and Public Health, 17(1–11), 2689. https://doi.org/10.3390/ijerph17082689

    Article  CAS  Google Scholar 

  • Liu, T., Liu, S., He, S., Tian, Z., & Zheng, M. (2021). Minimization of N2O emission through intermittent aeration in a sequencing batch reactor (SBR): Main behavior and mechanism. Water, 13(2), 210. https://doi.org/10.3390/w13020210

    Article  CAS  Google Scholar 

  • Liu, X., Han, Y., & Cheng, Y., Xu, G. (2020). Microwave-assisted ammonia modification of activated carbon for effective removal of phenol from wastewater: DFT and experiment study. Appl. Surf. Sci, 518, 1–8, 146258. https://doi.org/10.1016/j.apsusc.2020.146258

  • Martin, C. L., Jr., & Clark, C. J., II. (2022). Full scale SBR municipal wastewater treatment facility utilization of simultaneous nitrification/denitrification coupled with traditional nitrogen removal to meet water criterion. Green and Sustainable Chemistry, 12(2), 41–56. https://doi.org/10.4236/gsc.2022.122004

    Article  CAS  Google Scholar 

  • Metcalf, E., n.d. AECOM. (2014). Wastewater engineering: Treatment and resource recovery.2.

  • Mizzouri, N., & Shaaban, M. (2010). Performance study of SBR system for petroleum wastewater treatment. In Proceedings of the International Conference on the Environment and Natural Resources (ICENR). University Salaya Thailand.

  • Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology, 18, 195–210. https://doi.org/10.1038/s41579-019-0313-3

    Article  CAS  Google Scholar 

  • Moussavi, G., Barikbin, B., & Mahmoudi, M. (2010). The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chemical Engineering Journal, 158, 498–504. https://doi.org/10.1016/j.cej.2010.01.038

    Article  CAS  Google Scholar 

  • Neisi, A., Afshin, S., Rashtbari, Y., Babaei, A. A., Khaniabadi, Y. O., Asadi, A., Shirmardi, M., & Vosoughi, M. (2018). Efficiency of sequencing batch reactor for removal of organic matter in the effluent of petroleum wastewater. Data Br, 19, 2041–2046. https://doi.org/10.1016/j.dib.2018.06.094

    Article  Google Scholar 

  • Ng, J. Y., Wong, D. L., Kutty, S. R. M., & Jagaba, A. H. (2021). Organic and nutrient removal for domestic wastewater treatment using bench-scale sequencing batch reactor. In AIP Conference Proceedings, 2339, 1–020139. https://doi.org/10.1063/5.0045224

    Article  CAS  Google Scholar 

  • Preisner, M., Neverova-Dziopak, E., & Kowalewski, Z. (2020). An analytical review of different approaches to wastewater discharge standards with particular emphasis on nutrients. Environmental Management, 66(4), 694–708. https://doi.org/10.1007/s00267-020-01344-y

    Article  Google Scholar 

  • Primasari, B., Ibrahim, S., Annuar, M. S. M., & Remmie, L. X. I. (2011). Aerobic treatment of oily wastewater: Effect of aeration and sludge concentration to pollutant reduction and PHB accumulation. World Acad. Sci. Eng. Technol, 78, 172–176.

    Google Scholar 

  • Qachach, H., Tahiri, M., Souabi, S., Abouri, M., & Chanaa, I. (2017). Optimized physico-chemical treatment of the fuel washing water of an industrial gaz-blok with ferric chloride and polymer. In: Euro-Mediterranean Conference for Environmental Integration. Springer, 209–210. https://doi.org/10.1007/978-3-319-70548-4_68

  • Ramakrishnan, A., & Gupta, S. K. (2008). Effect of COD/NO3−-N ratio on the performance of a hybrid UASB reactor treating phenolic wastewater. Desalination, 232, 128–138. https://doi.org/10.1016/j.desal.2007.09.016

    Article  CAS  Google Scholar 

  • Rifi, S. K., Fels, L. E., Driouich, A., Hafidi, M., Ettaloui, Z., & Souabi, S. (2022). Sequencing batch reactor efficiency to reduce pollutant in olive oil mill wastewater mixed with urban wastewater. International Journal of Environmental Science and Technology, 1–14.

  • Saber, A., Mortazavian, S., James, D. E., & Hasheminejad, H. (2017). Optimization of collaborative photo-Fenton oxidation and coagulation for the treatment of petroleum refinery wastewater with scrap iron. Water, Air, and Soil Pollution, 228, 1–18. https://doi.org/10.1007/s11270-017-3494-2

    Article  CAS  Google Scholar 

  • Sathian, S., Rajasimman, M., Radha, G., Shanmugapriya, V., & Karthikeyan, C. (2014). Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Engineering Journal, 53(2), 417–426. https://doi.org/10.1016/j.aej.2014.03.003

    Article  Google Scholar 

  • Sekarani, F.A., & Hendrasarie, N. (2020) Reduction of organic parameters in apartment wastewater using sequencing batch reactor by adding activated carbon powder, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 506, 1–10, 12026. https://doi.org/10.1088/1755-1315/506/1/012026

  • Singhal, A., & Thakur, I. S. (2009). Decolourization and detoxification of pulp and paper mill effluent by Cryptococcus sp. Biochemical Engineering Journal, 46(1), 21–27. https://doi.org/10.1016/j.bej.2009.04.007

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Sivagami, K., Anand, D., Divyapriya, G., & Nambi, I. (2019). Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrasonics Sonochemistry, 51, 340–349. https://doi.org/10.1016/j.ultsonch.2018.09.007

    Article  CAS  Google Scholar 

  • Soliman, M., & Eldyasti, A. (2016). Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime. Bioresource Technology, 221, 85–95. https://doi.org/10.1016/j.biortech.2016.09.023

    Article  CAS  Google Scholar 

  • Suárez-García, L. I., Cuervo-López, F. M., & Texier, A.-C. (2019). Biological removal of mixtures of ammonium, phenol, cresol isomers, and sulfide in a sequencing batch reactor. Rev. Mex. Ing. Química, 18, 1189–1202. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Suarez

  • Swain, G., Sonwani, R. K., Giri, B. S., Singh, R. S., Jaiswal, R. P., & Rai, B. N. (2020). Collective removal of phenol and ammonia in a moving bed biofilm reactor using modified bio-carriers: Process optimization and kinetic study. Bioresour. Technol, 306, 1–8 123177. https://doi.org/10.1016/j.biortech.2020.123177

  • Talalaj, I. A. (2022). Performance of integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process for leachate treatment: effect of pH. Journal of Environmental Health Science and Engineering, 1–11.

  • Thakur, C., Srivastava, V. C., & Mall, I. D. (2014). Aerobic degradation of petroleum refinery wastewater in sequential batch reactor. Journal of Environmental Science and Health, Part A, 49(12), 1436–1444. https://doi.org/10.1080/10934529.2014.928557

    Article  CAS  Google Scholar 

  • Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment–A review. Renewable and Sustainable Energy Reviews, 78, 764–772. https://doi.org/10.1016/j.rser.2017.05.021

    Article  CAS  Google Scholar 

  • Varjani, S., Joshi, R., Srivastava, V. K., Ngo, H. H., & Guo, W. (2020). Treatment of wastewater from petroleum industry: Current practices and perspectives. Environmental Science and Pollution Research, 27, 27172–27180. https://doi.org/10.1007/s11356-019-04725-x

    Article  CAS  Google Scholar 

  • Varjani, S. J., Joshi, R. R., Kumar, P. S., Srivastava, V. K., Kumar, V., Banerjee, C., & Kumar, R. P. (2018). Polycyclic aromatic hydrocarbons from petroleum oil industry activities: effect on human health and their biodegradation, in: Waste Bioremediation. Springer, 185–199. https://doi.org/10.1007/978-981-10-7413-4_9

  • Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemicalcoagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  Google Scholar 

  • Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Curr. Pollut. Reports, 2, 157–167. https://doi.org/10.1007/s40726-016-0035-3

    Article  CAS  Google Scholar 

  • Wang, L., Li, B., Li, Y., & Wang, J. (2021). Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: Kinetics, stoichiometry and microbial community. Chemosphere, 263, 128184. https://doi.org/10.1016/j.chemosphere.2020.128184

  • Wei, Y., Jin, Y., & Zhang, W. (2020). Treatment of high-concentration wastewater from an oil and gas field via a paired sequencing batch and ceramic membrane reactor. International Journal of Environmental Research and Public Health, 17(6), 1953. https://doi.org/10.3390/ijerph17061953

    Article  CAS  Google Scholar 

  • Yan, L., Liu, S., Liu, Q., Zhang, M., Liu, Y., Wen, Y., Chen, Z., Zhang, Y., & Yang, Q. (2019). Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresource Technology, 275, 153–162. https://doi.org/10.1016/j.biortech.2018.12.054

    Article  CAS  Google Scholar 

  • Yilmaz, G., Lemaire, R., Keller, J., & Yuan, Z. (2008). Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnology and Bioengineering, 100, 529–541. https://doi.org/10.1002/bit.21774

    Article  CAS  Google Scholar 

  • Yusoff, N., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Saad, F. N. M., Khalik, W., & Lee, S.-L. (2019). Performance of the hybrid growth sequencing batch reactor (HG-SBR) for biodegradation of phenol under various toxicity conditions. Journal of Environmental Sciences, 75, 64–72. https://doi.org/10.1016/j.jes.2018.03.001

    Article  CAS  Google Scholar 

  • Zaki, M. S., Fawzi, O. M., & Shalaby, S. I. (2011). Phenol toxicity affecting hematological changes in cat fish (Clarius lazera). Life Sci. J, 8, 244–248.

    Google Scholar 

  • Zhao, Q., Yu, Q., Wang, X., Li, X., Li, Y., Li, L., & Ge, B. (2022). Efficient treatment of phenol wastewater by co-culture of Chlorella vulgaris and Candida tropicalis. Algal Research, 65, 102738. https://doi.org/10.1016/j.algal.2022.102738

  • Zhou, C. S., Wu, J. W., Ma, W. L., Liu, B. F., Xing, D. F., Yang, S. S., & Cao, G. L. (2022). Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes. Journal of Hazardous Materials, 432, 128715. https://doi.org/10.1016/j.jhazmat.2022.128715

  • Zielinska, M., Bernat, K., Cydzik-Kwiatkowska, A., Sobolewska, J., & Wojnowska-Baryla, I. (2012). Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations. Journal of Environmental Sciences, 24, 990–998. https://doi.org/10.1016/S1001-0742(11)60867-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Water, Environment and Climate Change Team, Laboratory of Process Engineering and Environment, Faculty of Science & Technology, University Hassan II, Mohammedia, Morocco.

Author information

Authors and Affiliations

Authors

Contributions

In this work, all the authors have contributed to orient the study, the organization, the samples of wastewater, and the drafting of the article.

Corresponding author

Correspondence to Safaa Khattabi Rifi.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettaloui, Z., Rifi, S.K., Haddaji, C. et al. A study on the efficiency of the sequential batch reactor on the reduction of wastewater pollution from oil washing. Environ Monit Assess 195, 387 (2023). https://doi.org/10.1007/s10661-023-11008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11008-z

Keywords

Navigation