Skip to main content

Advertisement

Log in

Carbon stocks of tree plantations in a Western Ghats landscape, India: influencing factors and management implications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biomass and carbon stock assessments in data-deficient plantations and identifying the factors influencing tree growth, distribution, and carbon stocks are extremely important for implementing sound silvicultural management and monitoring practices to achieve REDD+ goals. We conducted carbon stock assessments in five major plantation types in a regional landscape in the central Western Ghats, India, by establishing fifty 0.1-ha plots across the landscape. We quantified the overall carbon stocks by summing the carbon pools across mature trees, deadwood, and soil (0 –15 cm) components. Allometric equations were compared to address the uncertainty in the tree biomass carbon. The tree biomass carbon and soil organic carbon varied significantly across the plantation types (F = 55.23, p < 0.00). The present study yielded the highest carbon stocks in Pinus plantation (201.91 ± 9.52 Mg ha−1) and the least in Eucalyptus (122.63 ± 9.73 Mg ha−1). The correlation analysis displayed a strong influence of mean annual precipitation and edaphic factors on soil organic carbon, while basal area and elevation were good predictors of tree biomass carbon. The principal component analysis revealed an association of predictor variables in the distribution of plantation types. We found a strong association between mean annual precipitation on Pinus plantation and mean annual temperature on Eucalyptus and Acacia plantations. On the other hand, teak pure plantation was associated with structural and topographic variables, while edaphic factors mainly influenced the distribution of teak mixed plantations. The findings of the present study conclude substantial carbon storage ability of the plantations in the studied landscape which can play a significant role in mitigating the effects of climate change and reaching carbon neutrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available on a reasonable request from the corresponding author(s). Due to privacy concerns and MoU between the parties, the data are not publicly accessible since they are being used to create other reports for funders.

References

  • Akhabue, E. F., Chima, U. D., & Eguakun, F. S. (2021). Assessment of the above-ground carbon stock and soil physico-chemical properties of an arboretum within the University of Port Harcourt, Nigeria. Journal of Forest and Environmental Science, 37(3), 193–205. https://doi.org/10.7747/JFES.2021.37.3.193

    Article  Google Scholar 

  • Albariño, R. J., & Balseiro, E. G. (2002). Leaf litter breakdown in Patagonian streams: Native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems, 12(2), 181–192. https://doi.org/10.1002/aqc.511

    Article  Google Scholar 

  • Amir, M., Liu, X., Ahmad, A., Saeed, S., Mannan, A., & Muneer, M. A. (2018). Patterns of biomass and carbon allocation across chronosequence of chir pine (Pinus roxburghii) forest in Pakistan: inventory-based estimate. Advances in Meteorology, 3095851. https://doi.org/10.1155/2018/3095891

  • Anonymous. (2003). Working plan for Forests of Shivamogga Division, Shivamogga. Karnataka Forest Department. Retrieved December 10, 2022, from https://aranya.gov.in/

  • Anonymous. (2005). Management plan for Shettihalli Wildlife Sanctuary (2005–06 to 2014–15). Deputy Conservator of forest, Wildlife division, Shivamogga. Retrieved May 20, 2022, from https://aranya.gov.in/

  • Anonymous. (2012). Ground Water Information Booklet, Shimoga District, Karnataka. Retrieved May 20, 2022, from http://cgwb.gov.in 

  • Arellano, G., Cala, V., Fuentes, A., Cayola, L., Jørgensen, P. M., & Macía, M. J. (2016). A standard protocol for woody plant inventories and soil characterisation using temporary 0.1-ha plots in tropical forests. Journal of Tropical Forest Science, 28(4), 508–516.

  • Babu, K. N., Ayushi, K., Wilson, V. K., Ayyappan, N., & Parthasarathy, N. (2021). The woody flora of Shettihalli Wildlife Sanctuary, central Western Ghats of Karnataka, India-A checklist. Journal of Threatened Taxa, 13(13), 20033–20055. https://doi.org/10.11609/jott.7239.13.13.20033-20055

  • Baishya, R., & Barik, S. K. (2011). Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Annals of Forest Science, 68(4), 727–736. https://doi.org/10.1007/s13595-011-0089-8

  • Banerjee, S. K., & Prakasam, U. (2013). Biomass carbon pool and soil organic carbon sequestration in Tectona grandis plantations. Indian Forester, 139(9), 797–802.

    Google Scholar 

  • Baral, H., Guariguata, M. R., & Keenan, R. J. (2016). A proposed framework for assessing ecosystem goods and services from planted forests. Ecosystem Services, 22, 260–268. https://doi.org/10.1016/j.ecoser.2016.10.002

    Article  Google Scholar 

  • Bastida, F., Hernández, T., & García, C. (2018). Soil erosion and C losses: strategies for building soil carbon. In C. Garcia, P. Nannipieri, & T. Hernandez (Eds.), The Future of Soil Carbon (pp. 215–238). USA: Academic Press. https://doi.org/10.1016/B978-0-12-811687-6.00008-0

    Chapter  Google Scholar 

  • Bhardwaj, D. R., Kumar, A., Pala, N. A., Sharma, P., Kumar, D., Kumar, A., & Zahoor, S. (2022). Carbon density and C-sequestration of tree plantation ecosystems in the mid-hills of the NW-Himalayas: Implications for climate change mitigation. Land Degradation & Development, 33(12), 2115–2126. https://doi.org/10.1002/ldr.4307

  • Bhattacharyya, S. S., Leite, F. F. G. D., Adeyemi, M. A., Sarker, A. J., Cambareri, G. S., Faverin, C., Tieri, M. P., Castillo-Zacarías, C., Melchor-Martínez, E. M., Iqbal, H. M., & Parra-Saldívar, R. (2021). A paradigm shifts to CO2 sequestration to manage global warming–With the emphasis on developing countries. Science of The Total Environment, 790, 148169. https://doi.org/10.1016/j.scitotenv.2021.148169

  • Bolar, K., Bolar, M. K., & LazyData, T. R. (2019). Package ‘STAT’: R Package Version. https://rdocumentation.org/packages/STAT/versions/0.1.0

  • Boley, J. D., Drew, A. P., & Andrus, R. E. (2009). Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. Forest Ecology and Management, 257(11), 2254–2261. https://doi.org/10.1016/j.foreco.2009.02.035

    Article  Google Scholar 

  • Buvaneswaran, C., George, M., Perez, D., & Kanninen, M. (2006). Biomass of teak plantations in Tamil Nadu, India and Costa Rica compared. Journal of Tropical Forest Science, 18(3), 195–197. http://www.jstor.org/stable/43594672

  • Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111(1), 1–11. https://doi.org/10.1007/s004420050201

    Article  Google Scholar 

  • Cannell, M. G. R. (1984). Woody biomass of forest stands. Forest Ecology and Management, 8(3–4), 99–312. https://doi.org/10.1016/0378-1127(84)90062-8

    Article  Google Scholar 

  • Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of different soil carbon determination methods. Critical Reviews in Plant Sciences, 28(3), 164–178. https://doi.org/10.1080/07352680902776556

    Article  CAS  Google Scholar 

  • Chaturvedi, O. P., & Singh, J. S. (1982). Total biomass and biomass production of Pinus roxburghii trees growing in all-aged natural forests. Canadian Journal of Forest Research, 12(3), 632–640. https://doi.org/10.1139/x82-096

    Article  Google Scholar 

  • Chaturvedi, R. K., Tiwari, R., & Ravindranath, N. H. (2008). Climate change and forests in India. International Forestry Review, Commonwealth Forestry Association (pp. 256–268). https://doi.org/10.1505/ifor.10.2.256

  • Chaudhary, A., Burivalova, Z., Koh, L. P., & Hellweg, S. (2016). Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep23954

    Article  CAS  Google Scholar 

  • Chave, J., Andalo, C., Brown, S., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  CAS  Google Scholar 

  • Choudhury, B.U., Mohapatra, K.P., Das, A., Das, P. T., Nongkhlaw, L., Fiyaz, R. A., Ngachan, S. V., Hazarika, S., Rajkhowa, D. J., & Munda, G. C. (2013). Spatial variability in distribution of organic carbon stocks in the soils of North East India. Current Science, 104(5), 604–614. https://www.jstor.org/stable/24089860

  • Coleman, E. A., Schultz, B., Ramprasad, V., Fischer, H., Rana, P., Filippi, A. M., Güneralp, B., Ma, A., Rodriguez Solorzano, C., Guleria, V., Rana, R., & Fleischman, F. (2018). Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nature Sustainability, 20(1), 89–103. https://doi.org/10.1038/s41893-021-00761-z

    Article  Google Scholar 

  • Cong, W. F., van Ruijven, J., Mommer, L., De Deyn, G. B., Berendse, F., & Hoffland, E. (2014). Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 102(5), 1163–1170. https://doi.org/10.1111/1365-2745.12280

    Article  CAS  Google Scholar 

  • Daba, D. E., & Soromessa, T. (2019). The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: Case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 14(1), 1–13. https://doi.org/10.1186/s13021-019-0134-8

    Article  CAS  Google Scholar 

  • Dai, E., Zhu, J., Wang, X., & Xi, W. (2018). Multiple ecosystem services of monoculture and mixed plantations: A case study of the Huitong experimental forest of Southern China. Land Use Policy, 79, 717–724. https://doi.org/10.1016/j.landusepol.2018.08.014

    Article  Google Scholar 

  • Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(2), 1–17. https://doi.org/10.1007/s10661-015-4299-7

    Article  CAS  Google Scholar 

  • De Costa, W., & Suranga, H. R. (2012). Estimation of carbon stocks in the forest plantations of Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 40(1), 9–41.

    Article  Google Scholar 

  • de Foresta, H., Temu, A., Boulanger, D., & Korpelainen, H. (2010). Towards the assessment of trees outside forests: a thematic report prepared in the Framework of the Global Forest Resources Assessment. Italy: Food and Agriculture Organization of the United Nations Rome.

  • Devagiri, G., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A., Devakumar, A. S., & Hubballi, S. (2013). Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka India using spectral modeling. Tropical Ecology, 54(2), 149–165.

    Google Scholar 

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystem. Science, 263(5144), 185–190. https://doi.org/10.1126/science.263.5144.185

    Article  CAS  Google Scholar 

  • Domke, G. M., Woodall, C. W., Smith, J. E., Westfall, J. A., & McRoberts, R. E. (2012). Consequences of alternative tree-level biomass estimation procedures on US forest carbon stock estimates. Forest Ecology and Management, 270, 108–116. https://doi.org/10.1016/j.foreco.2012.01.022

    Article  Google Scholar 

  • Duncanson, L., Armston, J., Disney, M., et al. (2019). The importance of consistent global forest aboveground biomass product validation. Surveys in Geophysics, 40, 979–999. https://doi.org/10.1007/s10712-019-09538-8

    Article  CAS  Google Scholar 

  • Ekoungoulou, R., Liu, X., Loumeto, J. J., Ifo, S. A., Bocko, Y. E., Koula, F. E., & Niu, S. (2014). Tree allometry in tropical forest of Congo for carbon stocks estimation in above-ground biomass. Open Journal of Forestry, 4(05), 481. https://doi.org/10.4236/ojf.2014.45052

    Article  Google Scholar 

  • Fagan, M. E., Kim, D.-H., Settle, W., Ferry, L., Drew, J., Carlson, H., Slaughter, J., Schaferbien, J., Tyukavina, A., Harris, N. L., Goldman, E., & Ordway, E. M. (2022). The expansion of tree plantations across tropical biomes. Nature Sustainability, 1–8. https://doi.org/10.1038/s41893-022-00904-w

  • FAO. (2020). Global Forest Resources Assessment 2020: Main report. Rome. https://doi.org/10.4060/ca9825en

  • FSI. (1996). Volume equations for forests of India, Nepal, and Bhutan. Ministry of Environment & Forests, Government of India.

  • FSI. (2012). Carbon stock in India’s Forests, Forest Survey of India, Ministry of Environment, Forest and Climate Change. Retrieved May 20, 2022, from http://fsi.nic.in/Carbon-reports 

  • Galiana, A., Chaumont, J., Diem, H., & Dommergues, Y. R. (1990). Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biology and Fertility of Soils, 19(3), 261–267. https://doi.org/10.1007/s40974-017-0064-9

    Article  Google Scholar 

  • Ghosh, M., & Sinha, B. (2018). Policy analysis for realizing the potential of timber production from trees outside forests (TOF) in India. International Forestry Review, 20(1), 89–103. https://doi.org/10.1505/146554818822824255

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023

  • Giri, N., Rawat, L., & Kumar, P. (2014). Assessment of biomass carbon stock in a Tectona grandis Linn. f. plantation ecosystem of Uttarakhand, India. International Journal of Engineering Science and Technology, 3(5), 46–53.

  • Hameed, S. (2015). Working plan for Forests of Shivamogga Division (2011–12 to 2023–24). Deputy Conservator of forest, Working plan and Survey, Shivamogga. Retrieved December 10, 2022, from https://aranya.gov.in/

  • Herdiyanti, I., & Sulistyawati, E. (2009). Carbon stocks in Acacia mangium Willd. stands of different ages. In D. Kanakaraju, M. Kalu, I. Ipor, C. K. Lim, P. T. Lim, H. A. Roslan, Y. Esa, A. Razali, W. S. Ho, & S. Mohamad (Eds.), Proceedings of Conference on Natural Resources in the Tropics 3: Harnessing Tropical Natural Resources through Innovation and Technologies, 3–5 (pp. 679–685). Malaysia: Universiti Malaysia Sarawak.

  • Hoover, C., & Stout, S. (2007). The carbon consequences of thinning techniques: Stand structure makes a difference. Journal of Forestry, 105(5), 266–270. https://doi.org/10.1093/jof/105.5.266

    Article  Google Scholar 

  • ISFR. (2021). Forest Survey of India, Ministry of Environment, Forest & Climate change. Retrieved May 20, 2022, from https://fsi.nic.in/forest-report-2021

  • Jha, K. K. (2015). Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest, India. Journal of Forestry Research, 26(3), 589–604. https://doi.org/10.1007/s11676-015-0053-9

    Article  CAS  Google Scholar 

  • Justine, M. F., Yang, W., Wu, F., Tan, B., Khan, M. N., & Zhao, Y. (2015). Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the Upper Reaches of the Yangtze River. Forests, 6(10), 3665–3682. https://doi.org/10.3390/f6103665

    Article  Google Scholar 

  • Kalaiselvi, B., Hegde, R., Kumar, K.A., Vasundhara, R., Dharumarajan, S., Srinivasan, R., Lalitha, M., & Singh, S.K. (2021). Soil organic carbon stocks (SOCS) in different land uses of Western Ghats, Karnataka-A case study. Indian Society for Plantation Crops, 49(2), 146–150. https://doi.org/10.25081/jpc.2021.v49.i2.7262

  • Kamo, K., Vacharangkura, T., Tiyanon, S., Viriyabuncha, C., Nimpila, S., Duangsrisen, B., Thaingam, R., & Sakai, M. (2008). Biomass and dry matter production in planted forests and an adjacent secondary forest in the grassland area of Sakaerat, northeastern Thailand. Tropics, 17(3), 209–224. https://doi.org/10.3759/tropics.17.209

    Article  Google Scholar 

  • Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2010). Carbon storage and sequestration potential of selected tree species in India. Mitigation and Adaptation Strategies for Global Change, 15(5), 489–510. https://doi.org/10.1007/s11027-010-9230-5

    Article  Google Scholar 

  • Khan, W. A., Shaheen, H., & Awan, S. N. (2021). Biomass and soil carbon stocks in relation to the structure and composition of Chir Pine dominated forests in the lesser Himalayan foothills of Kashmir. Carbon Management, 12(4), 429–437. https://doi.org/10.1080/17583004.2021.1966511

    Article  CAS  Google Scholar 

  • Kongsager, R., Napier, J., & Mertz, O. (2013). The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change, 18(8), 1197–1213. https://doi.org/10.1007/s11027-012-9417-z

    Article  Google Scholar 

  • Kraenzel, M., Castillo, A., Moore, T., & Potvin, C. (2003). Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. Forest Ecology and Management, 173(1–3), 213–225. https://doi.org/10.1016/S0378-1127(02)00002-6

    Article  Google Scholar 

  • Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4), 236–249. https://doi.org/10.1007/s40974-017-0064-9

    Article  Google Scholar 

  • Kunhamu, T. K., Kumar, B. M., & Vishwanath, S. (2005). Tree allometry, volume and aboveground biomass yield in a seven year-old Acacia mangium Willd. stand at Thirvazhamkunnu, India. Multipurpose trees in the Tropics: Management and Improvement Strategies. Proceedings of the international symposium. Multipurpose trees in the tropics: assessment, growth and management (pp. 415–421). Jodhpur: Scientific Publishers.

  • Kurien, V. T., Thomas, E., Prasanth Narayanan, S., & Thomas, A. P. (2021). Soil organic carbon pool under selected tree plantations in the Southern Western Ghats of Kerala, India. Tropical Ecology, 62(1), 126–138. https://doi.org/10.1007/s42965-020-00137-y

    Article  CAS  Google Scholar 

  • Laclau, J.-P., Ranger, J., de Moraes Gonçalves, J. L., Maquère, V., Krusche, A. V., M’Bou, A. T., Nouvellon, Y., Saint-André, L., Bouillet, J. P., de Cassia Piccolo, M., & Deleporte, P. (2010). Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: Main features shown by intensive monitoring in Congo and Brazil. Forest Ecology and Management, 259(9), 1771–1785. https://doi.org/10.1016/j.foreco.2009.06.010

    Article  Google Scholar 

  • Lai, R. (2004). Soil carbon sequestration in natural and managed tropical forest ecosystems. Journal of Sustainable Forestry, 21(1), 1–30. https://doi.org/10.1300/J091v21n01_01

    Article  Google Scholar 

  • Lal, R. (2008). Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutrient Cycling in Agroecosystems, 81(2), 113–127. https://doi.org/10.1007/s10705-007-9147-x

    Article  Google Scholar 

  • Lê, S, Josse, J., & Husson, F. (2008). FactoMineR: A package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss

  • Liao, C., Luo, Y., Fang, C., Chen, J., & Li, B. (2012). The effects of plantation practice on soil properties based on the comparison between natural and planted forests: A meta-analysis. Global Ecology and Biogeography, 21(3), 318–327. https://doi.org/10.1111/j.1466-8238.2011.00690.x

    Article  Google Scholar 

  • Marín-Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: A tropical analysis. Global Ecology and Biogeography, 22(1), 105–117. https://doi.org/10.1111/j.1466-8238.2012.00788.x

    Article  Google Scholar 

  • Martin, A. R., & Thomas, S. C. (2011). A reassessment of carbon content in tropical trees. PLoS ONE, 6(8), e23533. https://doi.org/10.1371/journal.pone.0023533

  • Meiyappan, P., Roy, P. S., Soliman, A., Li, T., Mondal, P., Wang, S., & Jain, A. K. (2018). India village-level geospatial socio-economic data set: 1991, 2001. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Retrieved December 12, 2022, from https://doi.org/10.7927/H4CN71ZJ

  • MoEFCC. (2021). Safeguards information system for REDD+ in India. Ministry of Environment, Forest and Climate Change, Government of India.

  • Mukherjee, J., Mridha, N., Mondal, S., Chakraborty, D., & Kumar, A. (2018). Identifying suitable soil health indicators under variable climate scenarios: A ready reckoner for soil management. In: S. K. Bal, J. Mukherjee, B. U. Choudhury, & A. K. Dhawan (Eds.), Advances in crop environment interaction (pp. 205–227). Springer. https://doi.org/10.1007/978-981-13-1861-0_8

  • Mund, M. (2004). Carbon pools of European Beech Forests (Fagus Sylvatica) under different silvicultural management. University of Göttingen - Georg-August-Universität Göttingen. dissertation.

  • Mushtaq, T., Sood, K. K., & Raina, N. S. (2012). Species preferences for fuel wood in Shiwalik Himalayas-implications for agroforestry plantations. Indian Journal of Hill Farming, 25(2), 18–21.

    Google Scholar 

  • Nagaraja, M. S., Bhardwaj, A. K., & Champa, B. V. (2018). Biomass turnover interactions with soil C sequestration among the land uses in the Western Ghats. Current Science, 115(2), 213–216. https://www.jstor.org/stable/26978183

  • Negi, S. S. (1995). Biomass and nutrient distribution in young teak (Tectona grandis Linn. f) plantations in Tarai region of Uttar Pradesh. Indian Forester, 121(6), 455–464.

  • Ngom, A., Nakagawa, Y., Sawada, H., Tsukahara, J., Wakabayashi, S., Uchiumi, T., Nuntagij, A., Kotepong, S., Suzuki, A., Higashi, S., & Abe, M. (2004). A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. The Journal of General and Applied Microbiology, 50(1), 17–27. https://doi.org/10.2323/jgam.50.17

    Article  CAS  Google Scholar 

  • Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11(6), 783–789. https://doi.org/10.1111/2041-210X.13384

    Article  Google Scholar 

  • Osuri, A. M., Gopal, A., Raman, T. S., DeFries, R., Cook-Patton, S. C., & Naeem, S. (2020). Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environmental Research Letters, 15(3), 034011. https://doi.org/10.1088/1748-9326/ab5f75

  • Pachauri, R. K., & Meyer, L. A. (2014). Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Palm, M., Ostwald, M., Berndes, G., & Ravindranath, N. H. (2009). Application of clean development mechanism to forest plantation projects and rural development in India. Applied Geography, 29(1), 2–11. https://doi.org/10.1016/j.apgeog.2008.05.002

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593–622. https://doi.org/10.1146/annurev-ecolsys-110512-135914

    Article  Google Scholar 

  • Pant, H., & Tewari, A. (2013). Carbon sequestration potential of Chir Pine (Pinus roxburghii. Sarg) forest on two contrasting aspects in Kumaun Central Himalaya between 1650–1860 m elevation. Applied Ecology and Environmental Sciences, 1(6), 110–112. https://doi.org/10.12691/aees-1-6-2

  • Paquette, A., & Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment, 8(1), 27–34. https://doi.org/10.1890/080116

    Article  Google Scholar 

  • Pawson, S. M., Brin, A., Brockerhoff, E. G., Lamb, D., Payn, T. W., Paquette, A., & Parrotta, J. A. (2013). Plantation forests, climate change and biodiversity. Biodiversity and Conservation, 22(5), 1203–1227. https://doi.org/10.1007/s10531-013-0458

    Article  Google Scholar 

  • Payn, T., Carnus, J. M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L. N., & Wingfield, M. J. (2015). Changes in planted forests and future global implications. Forest Ecology and Management, 352, 57–67. https://doi.org/10.1016/j.foreco.2015.06.021

    Article  Google Scholar 

  • Pearson, T. R. (2007). Measurement guidelines for the sequestration of forest carbon (pp. 29–30). US Department of Agriculture, Forest Service: Northern Research Station.

    Book  Google Scholar 

  • Peichl, M., & Arain, M. A. (2007). Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 253(1–3), 68–80. https://doi.org/10.1016/j.foreco.2007.07.003

    Article  Google Scholar 

  • Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., & Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies.

  • Polyakova, O., & Billor, N. (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253(1–3), 11–18. https://doi.org/10.1016/j.foreco.2007.06.049

    Article  Google Scholar 

  • Prevedello, J. A., & Vieira, M. V. (2010). Does the type of matrix matter? A quantitative review of the evidence. Biodiversity and Conservation, 19(5), 1205–1223. https://doi.org/10.1007/s10531-009-9750-z

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raha, D., Dar, J. A., Pandey, P. K., Lone, P. A., Verma, S., Khare, P. K., & Khan, M. L. (2020). Variation in tree biomass and carbon stocks in three tropical dry deciduous forest types of Madhya Pradesh, India. Carbon Management, 11(2), 109–120. https://doi.org/10.1080/17583004.2020.1712181

    Article  CAS  Google Scholar 

  • Ramaswamy, S. N., Rao, R., & Arekal, G. D. (2001). Flora of Shimoga District. Mysore: University of Mysore.

    Google Scholar 

  • Ravindranath, N. H., & Ostwald, M. (2007). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Springer Science & Business Media.

  • Ravindranath, N. H., Srivastava, N., Murthy, I. K., Malaviya, S., Munsi, M., & Sharma, N. (2012). Deforestation and forest degradation in India–implications for REDD+. Current Science, 102(8), 1117–1125.

    Google Scholar 

  • Ravindranath, N. H., Murthy, I. K., Priya, J., Upgupta, S., Mehra, S., & Nalin, S. (2014). Forest area estimation and reporting: implications for conservation, management and REDD+. Current Science, 106(9), 1201–1206. http://www.jstor.org/stable/24102335

  • Rawat, R. S., Arora, G., Gautam, S., & Shaktan, T. (2020). Opportunities and challenges for the implementation of REDD+ activities in India. Current Science, 119(5), 749–756.

    Article  Google Scholar 

  • Reddy, C. S., Varghese, A. O., Padalia, H., et al. (2021). Manual - Biodiversity characterisation at community level in India using Earth Observation data (p. 72–74).

  • Roy, O., Meena, R. S., Kumar, S., Jhariya, M. K., & Pradhan, G. (2022). Assessment of land use systems for CO2 sequestration, carbon credit potential, and income security in Vindhyan region, India. Land Degradation & Development, 33(4), 670–682. https://doi.org/10.1002/ldr.4181

    Article  Google Scholar 

  • Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Hergoualc’h, K., & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219–225. https://doi.org/10.1016/j.foreco.2013.07.013

  • Salunkhe, O., Khare, P. K., Kumari, R., & Khan, M. L. (2018). A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecological Processes, 7(1), 1–12. https://doi.org/10.1186/s13717-018-0130-z

    Article  CAS  Google Scholar 

  • Samani, A., Ganguly, S., & Hom, S. K. (2021). Effect of chemical modification and heat treatment on biological durability and dimensional stability of Pinus roxburghii Sarg. New Zealand Journal of Forestry Science, 51(15). https://doi.org/10.33494/nzjfs512021x143x

  • Sarmah, D. (2019). Forestry in Karnataka–a Journey of 150 Years (p. 309). Notion Press.

    Google Scholar 

  • Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments, Ecological Risk Assessment Support Centre. Environmental Protection Agency.

    Google Scholar 

  • Sharma, K. P., Bhatta, S. P., Khatri, G. B., Pajiyar, A., & Joshi. D. K. (2020). Estimation of carbon stock in the chir pine (Pinus roxburghii Sarg.) plantation forest of Kathmandu valley, Central Nepal. Journal of Environmental Sciences, 36(1), 37–46. https://doi.org/10.7747/JFES.2020.36.1.37

  • Sharma, V., & Chaudhry, S. (2013). An overview of Indian forestry sector with REDD+ approach. ISRN Forestry, 298735https://doi.org/10.1155/2013/298735

  • Singh, S. L., Sahoo, U. K., Gogoi, A., & Kenye, A. (2018). Effect of land use changes on carbon stock dynamics in major land use sectors of Mizoram, Northeast India. Journal of Environmental Protection, 9, 1262–1285. https://doi.org/10.4236/jep.2018.912079

    Article  CAS  Google Scholar 

  • Tamang, B., Pala, N. A., Shukla, G., Rashid, M., Rather, M. M., Bhat, J. A., Masoodi, T. H., & Chakravarty, S. (2021). Trees outside forest (TOFs) aids in mitigating global climatic change through carbon sequestration: Example from academic institutional landscapes. Acta Ecologica Sinica, 41(4), 351–357. https://doi.org/10.1016/j.chnaes.2021.06.007

    Article  Google Scholar 

  • Tandon, V. N., Pande, M. C., & Singh, R. (1988). Biomass estimation and distribution of nutrients in five different aged Eucalyptus grandis plantation ecosystems in Kerala state. Indian Forester, 114(4), 184–190. https://doi.org/10.36808/if/1988/v114i4/9192

  • Tang, X., Zhao, X., Bai, Y., et al. (2018). Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences (PNAS), 115(16), 4021–4026. https://doi.org/10.1073/pnas.1700291115

    Article  CAS  Google Scholar 

  • Turner, J., Gessel, S. P., & Lambert, M. J. (1999). Sustainable management of native and exotic plantations in Australia. In: J. R. Boyle, J. K. Winjum, K. Kavanagh, E. C. Jensen, (Eds.), Planted Forests: Contributions to the Quest for Sustainable Societies (pp. 377–392). Springer. https://doi.org/10.1007/978-94-017-2689-4_24

  • Uniyal, D. P., Verma, S. K., Sharma, S. K., & Sharma, V. K. (2002). Provenance variation in the specific gravity of wood of Chir pine (Pinus roxburghii Sarg.). Indian Forester, 1295–1301.

  • Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., & Tapias, Á. D. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906–1913. https://doi.org/10.1016/j.foreco.2010.08.040

    Article  Google Scholar 

  • Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management, 262(8), 1648–1657. https://doi.org/10.1016/j.foreco.2011.07.018

    Article  Google Scholar 

  • Viera, M., & Rodríguez-Soalleiro, R. (2019). A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil. Forests, 10(7), 536. https://doi.org/10.3390/f10070536

    Article  Google Scholar 

  • Voigtlaender, M., Laclau, J. P., Gonçalves, J. L. D. M., Piccolo, M. D., Moreira, M. Z., Nouvellon, Y., Ranger, J., & Bouillet, J. P. (2012). Introducing Acacia mangium trees in Eucalyptus grandis plantations: Consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352(1), 99–111. https://doi.org/10.1007/s11104-011-0982-9

    Article  CAS  Google Scholar 

  • Vorster, A. G., Evangelista, P. H., Stovall, A. E., & Ex, S. (2020). Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance and Management, 15(1), 1–20. https://doi.org/10.1186/s13021-020-00143-6

    Article  CAS  Google Scholar 

  • Wani, A. A., Joshi, P. K., Singh, O., & Shaf, S. (2016). Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. Journal of Mountain Science, 13, 1431–1441. https://doi.org/10.1007/s11629-015-3545-3

    Article  Google Scholar 

  • Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., & Dokken, D. J. (2000). Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change (p. 388). Cambridge University Press.

    Google Scholar 

  • Wayson, C. A., Johnson, K. D., Cole, J. A., Olguín, M. I., Carrillo, O. I., & Birdsey, R. A. (2015). Estimating uncertainty of allometric biomass equations with incomplete fit error information using a pseudo-data approach: Methods. Annals of Forest Science, 72(6), 825–834. https://doi.org/10.1007/s13595-014-0436-7

    Article  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York (NY): Springer-Verlag. https://ggplot2.tidyverse.org

  • Yang, X., Zhang, W., & He, Q. (2019). Effects of intraspecific competition on growth, architecture and biomass allocation of Quercus liaotungensis. Journal of Plant Interactions, 14(1), 284–294. https://doi.org/10.1080/17429145.2019.1629656

    Article  CAS  Google Scholar 

  • Ye, X., Luan, J., Wang, H., Zhang, Y., Wang, Y., Ma, J., & Liu, S. (2022). Tree species richness and N-fixing tree species enhance the chemical stability of soil organic carbon in subtropical plantations. Soil Biology and Biochemistry, 174, 108828. https://doi.org/10.1016/j.soilbio.2022.108828

  • Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., & Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. https://doi.org/10.5061/dryad.234

  • Zhang, H., Guan, D., & Song, M. (2012). Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecology and Management, 277, 90–97. https://doi.org/10.1016/j.foreco.2012.04.016

    Article  Google Scholar 

  • Zhang, M., Cheng, X., Geng, Q., Shi, Z., Luo, Y., & Xu, X. (2019). Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 28(10), 1469–1486. https://doi.org/10.1111/geb.12966

    Article  Google Scholar 

  • Zhang, Y., Duan, B., Xian, J., Korpelainen, H., & Li, C. (2011). Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. Forest Ecology and Management, 262(3), 361–369. https://doi.org/10.1016/j.foreco.2011.03.042

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out as part of a project, “Biodiversity characterization at community level in India using Earth observation data.” We thank the Karnataka Forest Department for granting the necessary permissions for project execution. Thanks to the watchers, deputy rangers, and range forest officers of SWS and territorial ranges of Mandagadde and Ripponpet for their timely help in executing fieldwork. We thank the anonymous reviewers for providing valuable comments that improved the quality of the manuscript.

Funding

This work was supported by the Department of Biotechnology, Govt. India under grant No.BT/Coord.II/10/02/2016/22.03.2018. First author thanks Indian Council of Social Science Research for providing short-term doctoral fellowship (RFD/Short-Term/2022-23/ENV/ST/66).

Author information

Authors and Affiliations

Authors

Contributions

KNB and NA designed the study. KNB, SM, and SJ contributed to the fieldwork. KNB, SM, AAD, and KA performed the analysis and generated results. KNB and SM wrote the original draft of the manuscript. AAD, KA, NA, SMS, and NP reviewed and edited the manuscript. NA, SMS, and NP supervised the study and provided resources. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ayyappan Narayanan.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1823 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, K.N., Mandyam, S., Jetty, S. et al. Carbon stocks of tree plantations in a Western Ghats landscape, India: influencing factors and management implications. Environ Monit Assess 195, 404 (2023). https://doi.org/10.1007/s10661-023-10964-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10964-w

Keywords

Navigation