Skip to main content
Log in

Retrofitting a full-scale multistage landfill leachate treatment plant by introducing coagulation/flocculation/sedimentation and ultrafiltration process steps

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Considering that landfilling still remains among the most commonly used methods for the confrontation of solid wastes, effective methods should be applied to treat the leachate generated, due to its recalcitrant nature. In this work, a full-scale system consisting of two SBRs operating in parallel (350 m3 each) and two activated carbon (AC) columns operating in series (3 m3 each) was retrofitted by introducing a coagulation/flocculation/sedimentation (C/F/S) unit of 7.8 m3 and an ultrafiltration (UF) membrane of 100 m2 to effectively treat landfill leachate. The raw leachate was characterized by high COD and NH4+-N concentration, i.e., 3095 ± 706 mg/L and 1054 ± 141 mg/L respectively, a BOD/COD ratio of 0.22, and high concentrations of certain heavy metals. Leachate processing in this retrofitted multistage treatment system resulted in total COD removal efficiency of 89.84%, with biological treatment, C/F, UF, and AC contributing 46.31%, 4.68%, 15.98%, and 22.87% to the overall organic content removal. The retrofitted scheme achieved an overall NH4+-N and TKN removal of 92.03% and 91.75% respectively, attributed mostly to the activity of an effective nitrifying community. Color number (CN) was reduced by 26.96%, 10.29%, 15.94%, and 5.39% after the activated sludge, the C/F, the UF, and the AC adsorption process respectively, corresponding to a 58.91% overall decrease. Regarding heavy metal removal, all elements examined, apart from Ni, i.e., effluent As, Cd, Co, Cr, Cu, Hg, Mg, Mn, and Pb, were below the legislative limits set by the national authorities for restricted or unrestricted irrigation. Lastly, total operating expenses (OPEX) were estimated as equal to 72,687 €/year or 6.64 €/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data is included in the manuscript. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abood, A. R., Bao, J., Du, J., Zheng, D., & Luo, Y. (2014). Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation. SBR and Filtration. Waste Management, 34(2), 439–447. https://doi.org/10.1016/j.wasman.2013.10.025

    Article  CAS  Google Scholar 

  • Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology, 71(2), 113–123. https://doi.org/10.1016/S0960-8524(99)00070-X

    Article  CAS  Google Scholar 

  • Argun, M. E., Akkuş, M., & Ateş, H. (2020). Investigation of micropollutants removal from landfill leachate in a full-scale advanced treatment plant in Istanbul city, Turkey. Science of the Total Environment, 748. https://doi.org/10.1016/j.scitotenv.2020.141423

  • Aziz, S. Q., Aziz, H. A., & Yusoff, M. S. (2011a). Powdered activated carbon augmented double react-settle sequencing batch reactor process for treatment of landfill leachate. Desalination, 277, 313–320. https://doi.org/10.1016/j.desal.2011.04.046

    Article  CAS  Google Scholar 

  • Aziz, S. Q., Aziz, H. A., Yusoff, M. S., & Bashir, M. J. K. (2011b). Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. Journal of Hazardous Materials, 189, 404–413. https://doi.org/10.1016/j.jhazmat.2011.02.052

    Article  CAS  Google Scholar 

  • Benson, C. H., Barlaz, M. A., Lane, D. T., & D. T., & Rawe; J. M. (2007). Practice review of five bioreactor/recirculation landfills. Waste Management, 27, 13–29. https://doi.org/10.1016/j.wasman.2006.04.005

    Article  CAS  Google Scholar 

  • Clesceri, L., Greenberg, A., & Eaton, A. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA.

    Google Scholar 

  • Costa, A. M., Alfaia, R. G. D. S. M., & Campos, J. C. (2019). Landfill leachate treatment in Brazil – An overview. Journal of Environmental Management, 232, 110–116. https://doi.org/10.1016/j.jenvman.2018.11.006

    Article  CAS  Google Scholar 

  • de Almeida, R., Bila, D. M., Quintaes, B. R., & Campos, J. C. (2020). Cost estimation of landfill leachate treatment by reverse osmosis in a brazilian landfill. Waste Management and Research, 38(10), 1087–1092. https://doi.org/10.1177/0734242X20928411

  • Dolar, D., Košutić, K., & Strmecky, T. (2016). Hybrid processes for treatment of landfill leachate: Coagulation/UF/NF-RO and adsorption/UF/NF-RO. Separation and Purification Technology, 168, 39–46. https://doi.org/10.1016/j.seppur.2016.05.016

    Article  CAS  Google Scholar 

  • Ghaffariraad, M., & Ghanbarzadeh Lak, M. (2021). Landfill leachate treatment through coagulation-flocculation with lime and bio-sorption by walnut-shell. Environmental Management, 68(2), 226–239. https://doi.org/10.1007/s00267-021-01489-4

    Article  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Lawal, I. M., Abubakar, S., Hassan, I., Zubairu, I., Umaru, I., Abdurrasheed, A. S., Adam, A. A., Ghaleb, A. A. S., Almahbashi, N. M. Y., Al-dhawi, B. N. S., & Noor, A. (2021). Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. Journal of Environmental Management, 282. https://doi.org/10.1016/j.jenvman.2021.111946

  • Jaradat, A. Q., Telfah, D. B., & Ismail, R. (2021). Heavy metals removal from landfill leachate by coagulation/flocculation process combined with continuous adsorption using eggshell waste materials. Water Science and Technology, 84(12), 3817–3832. https://doi.org/10.2166/wst.2021.493

    Article  CAS  Google Scholar 

  • Justin, M. Z., & Zupančič, M. (2009). Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination, 246(1–3), 157–168. https://doi.org/10.1016/j.desal.2008.03.049

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technology, 87, 129–132. https://doi.org/10.1016/S0960-8524(02)00201-8

    Article  CAS  Google Scholar 

  • Kawai, Μ, Purwanti, I. F., Nagao, N., Slamet, A., Hermana, J., & Toda, T. (2012). Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia. Journal of Environmental Management, 110, 267–275. https://doi.org/10.1016/j.jenvman.2012.06.022

    Article  CAS  Google Scholar 

  • Khoo, K. S., Tan, X., Show, P. L., Pal, P., Juan, J. C., Ling, T. C., & Nguyen, T. H. P. (2020). Treatment for landfill leachate via physicochemical approaches: An overview. Chemical and Biochemical Engineering Quarterly, 34(1), 1–24. https://doi.org/10.15255/CABEQ.2019.1703

  • Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384. https://doi.org/10.1016/j.jhazmat.2019.121502

  • Liu, X., Li, X., Yang, Q., Yue, X., Shen, T., Zheng, W., & Zeng, G. (2012). Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineering Journal, 200–202, 39–51. https://doi.org/10.1016/j.cej.2012.06.012

    Article  CAS  Google Scholar 

  • Long, Y., Xu, J., Shen, D., Du, Y., & Feng, H. (2017). Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere, 167, 512–519. https://doi.org/10.1016/j.chemosphere.2016.10.016

    Article  CAS  Google Scholar 

  • Marañón, E., Castrillón, L., Fernández-Nava, Y., Fernández-Méndez, A., & Fernández-Sánchez, A. (2008). Coagulation-flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant. Journal of Hazardous Materials, 156(1–3), 538–544. https://doi.org/10.1016/j.jhazmat.2007.12.084

    Article  CAS  Google Scholar 

  • Melidis, P. (2014). Landfill leachate nutrient removal using intermittent aeration. Environmental Processes, 1, 221–230. https://doi.org/10.1007/s40710-014-0022-x

    Article  CAS  Google Scholar 

  • Miao, L., Wang, S., & Li, b., Cao, T., Xue, T., & Peng, Y. (2015). Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate. Bioresource Technology, 192, 354–360. https://doi.org/10.1016/j.biortech.2015.05.013

    Article  CAS  Google Scholar 

  • Mohammad-pajooh, E., Weichgrebe, D., & Cuff, G. (2017). Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification - A full scale survey. Journal of Environmental Management 187, 354–364. https://doi.org/10.1016/j.jenvman.2016.10.061

  • Neczaj, E., Okoniewska, E., & Kacprzak, M. (2005). Treatment of landfill leachate by Sequencing Batch Reactor. Desalination, 185, 357–362. https://doi.org/10.1016/j.desal.2005.04.044

    Article  CAS  Google Scholar 

  • Oloibiri, V., Ufomba, I., Chys, M., Audenaert, W. T. M., Demeestere, K., & Van Hulle, S. W. H. (2015). A comparative study on the efficiency of ozonation and coagulation–flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Management, 43, 335–342. https://doi.org/10.1016/j.wasman.2015.06.014

    Article  CAS  Google Scholar 

  • Oulego, P., Collado, S., Laca, A., & Díaz, M. (2016). Impact of leachate composition on the advanced oxidation treatment. Water Research, 88, 389–402. https://doi.org/10.1016/j.watres.2015.09.048

    Article  CAS  Google Scholar 

  • Pi, K. W., Gao, L. X., Fan, M. X., Gong, W. Q., & Wan, D. J. (2009). Two-stage biodegradation coupled with ultrafiltration for treatment of municipal landfill leachate. Process Safety and Environmental Protection, 87, 336–342. https://doi.org/10.1016/j.psep.2009.07.002

    Article  CAS  Google Scholar 

  • Pinedo, M. L., Riascos, B. D., Quintero, X. E., & Costa, C. (2022). Mechanism of pH sensitive flocculation for organic load and colour reduction in landfill leachate. Waste Management (New York, N.Y.), 144, 163–172. https://doi.org/10.1016/j.wasman.2022.03.020

  • Pisharody, L., Gopinath, A., Malhotra, M., Nidheesh, P. V., & Kumar, M. S. (2022). Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132216

  • Polatidou, E., Azis, K., Polatides, C., Remmas, N., Ntougias, S., & Melidis, P. (2022). Evaluation of electrochemical and O3/UV/H2O2 methods at various combinations during treatment of mature landfill leachate. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 57(4), 298–305. https://doi.org/10.1080/10934529.2022.2060022

    Article  CAS  Google Scholar 

  • Remmas, N., Ntougias, S., Chatzopoulou, M., & Melidis, P. (2018). Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 53(9), 847–853. https://doi.org/10.1080/10934529.2018.1455375

    Article  CAS  Google Scholar 

  • Renou, S., Poulain, S., Givaudan, J. G., & Moulin, P. (2009). Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate. Desalination, 249, 72–82. https://doi.org/10.1016/j.desal.2008.09.007

    Article  CAS  Google Scholar 

  • Righetto, I., Al-Juboori, R. A., Kaljunen, J. U., & Mikola, A. (2021). Multipurpose treatment of landfill leachate using natural coagulants - Pretreatment for nutrient recovery and removal of heavy metals and micropollutants. Journal of Environmental Chemical Engineering, 9(3). https://doi.org/10.1016/j.jece.2021.105213

  • Silva, T. F. C. V., Elisabete, M., Silva, F., Cunha-Queda, A. C., Fonseca, A., Saraiva, I., Sousa, M. A., Goncalves, C., Alpendurada, M. F., Boaventura, R. A. R., & Vilar, V. J. P. (2013). Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial - Biodegradability enhancement and evolution profile of trace pollutants. Water Resolution 4(7), 6167–6186. https://doi.org/10.1016/j.watres.2013.07.036

  • Silva, A. C., Dezotti, M., & Sant'Anna Jr., & G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55(2), 207–214. https://doi.org/10.1016/j.chemosphere.2003.10.013

  • Skouteris, G., Saroj, D., Melidis, P., Hai, F. I., & Ouki, S. (2015). The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation – A critical review. Bioresource Technology 185, 399–410 https://doi.org/10.1016/j.biortech.2015.03.010

  • Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53, 737–744. https://doi.org/10.1016/S0045-6535(03)00513-7

  • Tauchert, E., Schneider, S., Lopes de Morais, J., & Peralta-Zamor, P. (2006). Photochemically-assisted electrochemical degradation of landfill leachate. Chemosphere 64, 1458–1463. https://doi.org/10.1016/j.chemosphere.2005.12.064

  • Tizaoui, C., Bouselmi, L., Mansouri, L., & Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1–2), 316–324. https://doi.org/10.1016/j.jhazmat.2006.09.023

    Article  CAS  Google Scholar 

  • Tong, H., Yin, K., Ge, L., Giannis, A., Chuan, V. W. L., & Wang, J. (2015). Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions. Journal of Hazardous Materials, 287, 342–348. https://doi.org/10.1016/j.jhazmat.2015.01.049

  • Torretta, V., Ferronato, N., Katsoyiannis, I. A., Tolkou A. K., & Airoldi, M. (2017). Novel and conventional technologies for landfill leachates treatment: A review. Sustainability 9(1). https://doi.org/10.3390/su9010009

  • Tsilogeorgis, J., Zouboulis, A., Samaras, A., & Zamboulis, D. (2008). Application of a membrane Sequencing Batch Reactor for landfill leachate treatment. Desalination 221(1–3), 483–493. https://doi.org/10.1016/j.desal.2007.01.109

  • van der Sloot, H. A., van Zomeren, A., Meeussen, J. C. L., Seignette, P., & Bleijerveld, R. (2007). Test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal. Journal of Hazardous Materials, 141(2), 354–369. https://doi.org/10.1016/j.jhazmat.2006.05.106

  • Vedrenne, M., Vasquez-Medrano, R., Prato-Garcia, D., Frontana-Uribe, B. A., & Ibanez, J. G. (2012). Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. Journal of Hazardous Materials, 205–206, 208–215. https://doi.org/10.1016/j.jhazmat.2011.12.060

    Article  CAS  Google Scholar 

  • Vyas, S., Prajapati, P., Shah, A. V., & Varjani, S. (2022). Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Science of the Total Environment, 814 https://doi.org/10.1016/j.scitotenv.2021.152802

  • Wu, Y., Zhou, S., Ye, X., Chen, D., Zheng, K., & Qin, F., (2011). Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Safety and Environmental Protection 89(2), 112–120. https://doi.org/10.1016/j.psep.2010.10.005

  • Yong, Z. J., Bashir, M. J. K., Aun Ng, C., Sethupathi, S., & Lim J. W. (2018). A sequential treatment of intermediate tropical landfill leachate using a Sequencing Batch Reactor (SBR) and coagulation. Journal of Environmental Management 205, 244–252. https://doi.org/10.1016/j.jenvman.2017.09.068

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.G. and K.A. conducted the experimental procedure and the analyses. N.R. interpreted the results and contributed to the writing of the manuscript. P.M. had the overall supervision, designed the experimental procedure, and edited the final text. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paraschos Melidis.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glarakis, J., Remmas, N., Azis, K. et al. Retrofitting a full-scale multistage landfill leachate treatment plant by introducing coagulation/flocculation/sedimentation and ultrafiltration process steps. Environ Monit Assess 195, 326 (2023). https://doi.org/10.1007/s10661-023-10939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10939-x

Keywords

Navigation