Skip to main content

Advertisement

Log in

Curbing land degradation and mitigating climate change in mountainous regions: a systemic review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human population is envisaged to continue to grow, with a tremendous contribution to land degradation and climate change. Climate change and land degradation are intertwined, thus tackling climate change means mitigating land degradation. Climate change is a worldwide problem that affects lives and livelihoods; henceforth, mitigating measures are urgently required. With their unique, rich biodiversity, mountain areas are severely sensitive to climate change and land degradation; therefore, a speedy need to curb land degradation in mountain areas is needed. The aim of this systematic review was to appraise different strategic methods used globally to minimise land degradation and sustain mountainous areas in a frequently changing climate. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was utilised in this systematic review. The Scopus data base was utilised for document search, with a selection of articles limited between the years 2012 and 2021. Only articles written in English were considered. After assessing the abstracts, 703 articles were retained for a full review, leading to the final selection of 84 articles. The results show that soil erosion, overgrazing and construction of infrastructure are major causes of land degradation. The human population increase is also an enormous contributing factor to activities leading to land degradation and climate change. A conspicuous intensification of agricultural activities is expected to continue due to rising food demand. Curbing land degradation and climate change in mountain areas can be enforced by the government through stricter regulations. However, regulations and policies must be locally initiated, instead of globally initiated, with local communities being the main stakeholders. Hence, bottom-up rather than top-down policies would encourage local communities to embrace mitigation policy initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adego, T., Simane, B., & Woldie, G. A. (2018). Sustainability, institutional arrangement and challenges of community based climate smart practices in northwest Ethiopia. Agriculture & Food Security, 7(1), 56. https://doi.org/10.1186/s40066-018-0206-0

    Article  Google Scholar 

  • Adelabu, D. B., Clark, V. R., & Bredenhand, E. (2020). Potential for sustainable mountain farming: Challenges and prospects for sustainable smallholder farming in the maloti-drakensberg mountains. Mountain Research and Development, 40(1), A1–A11. https://doi.org/10.1659/MRD-JOURNAL-D-19-00058.1

    Article  Google Scholar 

  • Akhtar, R., Masud, M. M., Uddin, M. D., & Adnan Hye, Q. M. (2020). Underlying drivers that influence farmers sustainable adaptation strategies. International Journal of Management and Sustainability, 9(3), 181–193. https://doi.org/10.18488/journal.11.2020.93.181.193

  • Al-Wadaey, A., & Ziadat, F. (2014). A participatory GIS approach to identify critical land degradation areas and prioritize soil conservation for mountainous olive groves (case study). Journal of Mountain Science, 11(3), 782–791. https://doi.org/10.1007/s11629-013-2827-x

    Article  Google Scholar 

  • Amiraslani, F., & Caiserman, A. (2018). Multi-stakeholder and multi-level interventions to tackle climate change and land degradation: The case of Iran. Sustainability (Switzerland), 10(6). https://doi.org/10.3390/su10062000

  • Anderson, J., Keppel, G., Thomson, S.-M., Randell, A., Raituva, J., Koroi, I., & Kleindorfer, S. (2018). Changes in climate and vegetation with altitude on Mount Batilamu, Viti Levu, Fiji. Journal of Tropical Ecology, 34(5), 316–325. https://doi.org/10.1017/S0266467418000299

    Article  Google Scholar 

  • Appiah, D. O., Bugri, J. T., Forkuo, E. K., & Yamba, S.  (2016). Agricultural and forest land use potential for REDD+ among smallholder land users in rural Ghana. International Journal of Forestry Researchhttps://doi.org/10.1155/2016/7218305

  • Arficho, M., & Thiel, A. (2020). Does land-use policy moderate impacts of climate anomalies on lulc change in dry-lands? An empirical enquiry into drivers and moderators of LULC change in Southern Ethiopia. Sustainability (Switzerland), 12(15). https://doi.org/10.3390/SU12156261

  • Berauer, B. J., Wilfahrt, P. A., Schuchardt, M. A., Schlingmann, M., Schucknecht, A., & Jentsch, A. (2021). High land-use intensity diminishes stability of forage provision of mountain pastures under future climate variability. Agronomy, 11(5). https://doi.org/10.3390/agronomy11050910

  • Berrang-Ford, L., Pearce, T., & Ford, J. D. (2015). Systematic review approaches for climate change adaptation research. Regional Environmental Change, 15(5), 755–769. https://doi.org/10.1007/s10113-014-0708-7

    Article  Google Scholar 

  • Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., & Hou, X. (2018). China’s response to a national land-system sustainability emergency /704/844/685 /704/172/4081 perspective. Nature, 559(7713), 193–204. https://doi.org/10.1038/s41586-018-0280-2

    Article  CAS  Google Scholar 

  • Cai, H., Zhang, S., & Yang, X. (2012). Forest dynamics and their phenological response to climate warming in the Khingan Mountains, Northeastern China. International Journal of Environmental Research and Public Health, 9(11), 3943–3953. https://doi.org/10.3390/ijerph9113943

    Article  Google Scholar 

  • Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., & Myneni, R. B. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2), 122–129. https://doi.org/10.1038/s41893-019-0220-7

    Article  Google Scholar 

  • Gafforov, K. S., Bao, A., Rakhimov, S., Liu, T., Abdullaev, F., Jiang, L., & Mukanov, Y. (2020). The assessment of climate change on rainfall-runoff erosivity in the Chirchik-Akhangaran Basin, Uzbekistan. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083369

  • Garrard, R., Kohler, T., Price, M. F., Byers, A. C., Sherpa, A. R., & Maharjan, G. R. (2016). Land use and land cover change in sagarmatha national park, a world heritage site in the Himalayas of Eastern Nepal. Mountain Research and Development, 36(3), 299–310. https://doi.org/10.1659/MRD-JOURNAL-D-15-00005.1

    Article  Google Scholar 

  • Gong, H., Meng, D., Li, X., & Zhu, F. (2013). Soil degradation and food security coupled with global climate change in northeastern China. Chinese Geographical Science, 23(5), 562–573. https://doi.org/10.1007/s11769-013-0626-5

    Article  Google Scholar 

  • Guo, M., Wang, X.-F., Li, J., Yi, K.-P., Zhong, G.-S., Wang, H.-M., & Reuter, M. (2013). Spatial distribution of greenhouse gas concentrations in arid and semi-arid regions: A case study in East Asia. Journal of Arid Environments, 91, 119–128. https://doi.org/10.1016/j.jaridenv.2013.01.001

    Article  Google Scholar 

  • He, K., Gutiérrez, E. E., Heming, N. M., Koepfli, K.-P., Wan, T., He, S., & Jiang, X.-L. (2019). Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains. Journal of Biogeography, 46(10), 2232–2247. https://doi.org/10.1111/jbi.13664

    Article  Google Scholar 

  • Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., & Wang, G. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719–778. https://doi.org/10.1002/2016RG000550

    Article  Google Scholar 

  • Huber, R., Bugmann, H., Buttler, A., & Rigling, A. (2013). Sustainable land-use practices in European mountain regions under global change: An integrated research approach. Ecology and Society, 18(3). https://doi.org/10.5751/ES-05375-180337

  • Jew, E. K. K., Dougill, A. J., & Sallu, S. M. (2017). Tobacco cultivation as a driver of land use change and degradation in the miombo woodlands of south-west Tanzania. Land Degradation and Development, 28(8), 2636–2645. https://doi.org/10.1002/ldr.2827

    Article  Google Scholar 

  • Jiang, B., Bamutaze, Y., & Pilesjö, P. (2014). Climate change and land degradation in Africa: A case study in the Mount Elgon region, Uganda. Geo-Spatial Information Science, 17(1), 39–53. https://doi.org/10.1080/10095020.2014.889271

    Article  Google Scholar 

  • Jordaan, A., Bahta, Y. T., & Phatudi-Mphahlele, B. (2019). Ecological vulnerability indicators to drought: Case of communal farmers in Eastern Cape, South Africa. Jamba: Journal of Disaster Risk Studies, 11(1). https://doi.org/10.4102/jamba.v11i1.591

  • Kazakis, G., Ghosn, D., Remoundou, I., Nyktas, P., Talias, M. A., & Vogiatzakis, I. N. (2021). Altitudinal vascular plant richness and climate change in the alpine zone of the lefka ori, crete. Diversity, 13(1), 1–16. https://doi.org/10.3390/d13010022

    Article  Google Scholar 

  • Kryza, M., Werner, M., Dore, A. J., BłaŚ, M., & Sobik, M. (2012). The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds. Journal of Environmental Management, 109, 70–79. https://doi.org/10.1016/j.jenvman.2012.04.048

    Article  CAS  Google Scholar 

  • Laube, W., Schraven, B., & Awo, M. (2012). Smallholder adaptation to climate change: Dynamics and limits in Northern Ghana. Climatic Change, 111(3), 753–774. https://doi.org/10.1007/s10584-011-0199-1

    Article  Google Scholar 

  • Lehikoinen, A., Green, M., Husby, M., Kålås, J. A., & Lindström, A. (2014). Common montane birds are declining in northern Europe. Journal of Avian Biology, 45(1), 3–14. https://doi.org/10.1111/j.1600-048X.2013.00177.x

    Article  Google Scholar 

  • Leng, X., Feng, X., & Fu, B. (2020). Driving forces of agricultural expansion and land degradation indicated by vegetation continuous fields (VCF) data in drylands from 2000 to 2015. Global Ecology and Conservation, 23. https://doi.org/10.1016/j.gecco.2020.e01087

  • Liu, Z., Herman, J. D., Huang, G., Kadir, T., & Dahlke, H. E. (2021). Identifying climate change impacts on surface water supply in the southern Central Valley, California. Science of the Total Environment, 759. https://doi.org/10.1016/j.scitotenv.2020.143429

  • Liu, Z., & Merwade, V. (2018). Accounting for model structure, parameter and input forcing uncertainty in flood inundation modeling using Bayesian model averaging. Journal of Hydrology, 565, 138–149. https://doi.org/10.1016/j.jhydrol.2018.08.009

    Article  Google Scholar 

  • Mei, L., Bao, G., Tong, S., Yin, S., Bao, Y., Jiang, K., & Huang, X. (2021). Elevation-dependent response of spring phenology to climate and its legacy effect on vegetation growth in the mountains of northwest Mongolia. Ecological Indicators, 126. https://doi.org/10.1016/j.ecolind.2021.107640

  • Milan, A., & Ho, R. (2014). Livelihood and migration patterns at different altitudes in the Central Highlands of Peru. Climate and Development, 6(1), 69–76. https://doi.org/10.1080/17565529.2013.826127

    Article  Google Scholar 

  • Nziku, Z. C., Asheim, L. J., Eik, L. O., Mwaseba, D., & Kifaro, G. C. (2016). Climate change adaptation in vulnerable crop and livestock production systems in Mgeta, Tanzania. African Journal of Food, Agriculture, Nutrition and Development, 16(2), 10853–10865. https://doi.org/10.18697/ajfand.74.15605

  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-021-01626-4

  • Pearce, T. D., Rodríguez, E. H., Fawcett, D., & Ford, J. D. (2018). How is Australia adapting to climate change based on a systematic review? Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10093280

  • Perović, V., Kadović, R., Đurđević, V., Pavlović, D., Pavlović, M., Čakmak, D., & Pavlović, P. (2021). Major drivers of land degradation risk in Western Serbia: Current trends and future scenarios. Ecological Indicators, 123. https://doi.org/10.1016/j.ecolind.2021.107377

  • Pons-Pons, M., Johnson, P. A., Rosas-Casals, M., Sureda, B., & Jover, E. (2012). Modeling climate change effects on winter ski tourism in Andorra. Climate Research, 54(3), 197–207. https://doi.org/10.3354/cr01117

    Article  Google Scholar 

  • Poudel, S., Funakawa, S., & Shinjo, H. (2017). Household perceptions about the impacts of climate change on food security in the mountainous region of Nepal. Sustainability (Switzerland), 9(4). https://doi.org/10.3390/su9040641

  • Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., & Michaelsen, J. (2013). The climate-population nexus in the East African Horn: Emerging degradation trends in rangeland and pastoral livelihood zones. Global Environmental Change, 23(6), 1525–1541. https://doi.org/10.1016/j.gloenvcha.2013.10.002

    Article  Google Scholar 

  • Rajib, A., Liu, Z., Merwade, V., Tavakoly, A. A., & Follum, M. L. (2020). Towards a large-scale locally relevant flood inundation modeling framework using SWAT and LISFLOOD-FP. Journal of Hydrology, 581. https://doi.org/10.1016/j.jhydrol.2019.124406

  • Shah, R. D. T., Sharma, S., Haase, P., Jähnig, S. C., & Pauls, S. U. (2015). The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: A useful concept to monitor climate change impacts in mountain regions. Climatic Change, 132(2), 265–278. https://doi.org/10.1007/s10584-015-1417-z

    Article  CAS  Google Scholar 

  • Sholagberu, A. T., Ul Mustafa, M. R., Wan Yusof, K., & Ahmad, M. H. (2016). Evaluation of rainfall-runoff erosivity factor for cameron highlands, Pahang, Malaysia. Journal of Ecological Engineering, 17(3), 1–8. https://doi.org/10.12911/22998993/63338

  • Skarbø, K., & VanderMolen, K. (2016). Maize migration: Key crop expands to higher altitudes under climate change in the Andes. Climate and Development, 8(3), 245–255. https://doi.org/10.1080/17565529.2015.1034234

    Article  Google Scholar 

  • Tambe, S., Kharel, G., Arrawatia, M. L., Kulkarni, H., Mahamuni, K., & Ganeriwala, A. K. (2012). Reviving dying springs: Climate change adaptation experiments from the Sikkim Himalaya. Mountain Research and Development, 32(1), 62–72. https://doi.org/10.1659/MRD-JOURNAL-D-11-00079.1

    Article  Google Scholar 

  • Thompson, I., Shrestha, M., Chhetri, N., & Agusdinata, D. B. (2020). An institutional analysis of glacial floods and disaster risk management in the Nepal Himalaya. International Journal of Disaster Risk Reduction, 47.https://doi.org/10.1016/j.ijdrr.2020.101567

  • Tovar, C., Arnillas, C. A., Cuesta, F., & Buytaert, W. (2013). Diverging responses of tropical andean biomes under future climate conditions. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063634

  • Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A., & Herrick, J. E. (2017). Land degradation and climate change: Building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. https://doi.org/10.1002/fee.1530

    Article  Google Scholar 

  • Yohannes, Z., Teshome, M., & Belay, M. (2020). Adaptive capacity of mountain community to climate change: Case study in the Semien Mountains of Ethiopia. Environment, Development and Sustainability, 22(4), 3051–3077. https://doi.org/10.1007/s10668-019-00334-3

    Article  Google Scholar 

  • Zwicke, M., Alessio, G. A., Thiery, L., Falcimagne, R., Baumont, R., Rossignol, N., & Picon-Cochard, C. (2013). Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies. Global Change Biology, 19(11), 3435–3448. https://doi.org/10.1111/gcb.12317

    Article  Google Scholar 

Download references

Funding

The work was funded by the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonginkosi S. Vilakazi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilakazi, B.S., Mukwada, G. Curbing land degradation and mitigating climate change in mountainous regions: a systemic review. Environ Monit Assess 195, 275 (2023). https://doi.org/10.1007/s10661-022-10906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10906-y

Keywords

Navigation