Skip to main content
Log in

Analysis of potentially toxic elements from selected mechanical workshops using the geo-accumulation index and principal component analysis in Omu-Aran Community, Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bioaccumulation of potentially toxic elements in soil threatens public health and the ecosystem. This study aims to assess the concentration of potentially toxic elements (chromium (Cr), lead (Pb), iron (Fe), arsenic (As), and cadmium (Cd)) in selected automobile workshop premises in Omu-Aran, Nigeria. Forty-eight samples were collected at a depth (15 cm) in six locations, including a control point. Acid digestion was carried out to prepare the soil samples before assessing their concentration via an atomic absorption spectrophotometer. Geo-accumulation index (Igeo) was used to classify the level of contamination. Statistical analysis, which includes principal component analysis (PCA) and Pearson’s correlation, was also determined. The difference in concentration was determined using ANOVA. In the study area, the lowest observed concentration values for Cr, Pb, Fe, As, and Cd, which are 0.246 ± 0.002 mg/kg, 0.178 ± 0.001 mg/kg, 90.715 ± 0.038 mg/kg, 0.012 ± 0.004 mg/kg, and 0.078 ± 0.004 mg/kg, respectively, are relatively higher than observed for the control. The observed potentially toxic elements fall within three Igeo based on Muller’s interpretation; heavily to extremely contaminated (Cd), moderately to heavily contaminated (Pb, Cr, and As), and uncontaminated to moderately contaminated (Fe). PCA shows that two principal components (PC) account for up to 91.052% of the original mean dataset variability. PC1 explains 67.723% of the total variance associated with Cd, Cr, Fe, Pb, and As, indicating anthropogenic is the primary source of these potentially toxic elements. The PC2 accounted for 23.329%, with Pb and As significant contributors. Cadmium contamination of soil was the most influential, with an Igeo value ranging from 4 to 5. Residents in the polluted region face considerable health risks from potentially toxic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

All relevant data are available via Data bris repository of Landmark University.

References

  • Ackah, M. (2019). Soil elemental concentrations, geoaccumulation index, non- carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana. Chemosphere, 235, 908–917. https://doi.org/10.1016/j.chemosphere.2019.07.014

    Article  CAS  Google Scholar 

  • Adelekan, B. A., & Alawode, A. O. (2011). Contributions of municipal refuse dumps to heavy metals concentrations in soil profile and groundwater in Ibadan Nigeria. Journal of Applied Biosciences, 40, 2727–2737.

    Google Scholar 

  • Al-Badaii, F. (2014). Heavy metals and water quality assessment using multivariate statistical techniques and water quality index of the Semenyih River, Peninsular Malaysia. Iranica Journal of Energy and Environment, 5(2). https://doi.org/10.5829/idosi.ijee.2014.05.02.04

  • Baloch, S., Kazi, T. G., Baig, J. A., Afridi, H. I., & Arain, M. B. (2020). Occupational exposure of lead and cadmium on adolescent and adult workers of battery recycling and welding workshops: Adverse impact on health. Science of the Total Environment, 720, 137549. https://doi.org/10.1016/j.scitotenv.2020.137549

    Article  CAS  Google Scholar 

  • Baptista, A., Pinto, G., Silva, F. J., Ferreira, A. A., Pinto, A. G., & Sousa, V. F. (2021). Wear characterization of chromium PVD coatings on polymeric substrate for automotive optical components. Coatings, 11(5), 555.

    Article  CAS  Google Scholar 

  • Bali, A. S., & Sidhu, G. P. S. (2021). Heavy metal contamination indices and ecological risk assessment index to assess metal pollution status in different soils. In Heavy Metals in the Environment (pp. 87–98). Elsevier.

  • Chapman, P. M., & Wang, F. (2000). Issues in ecological risk assessment of inorganic metals and metalloids. Human and Ecological Risk Assessment, 6(6), 965–988.

    Article  CAS  Google Scholar 

  • Chauhan, G., & Chauhan, U. K. (2014). Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. International Journal of Scientific and Research Publications, 4(9), 1–9.

  • Chokor, A. A., & Ekanem, E. O. (2016). Heavy metals contamination profile in soil from automobile workshops in Sapele, Nigeria. World J Anal Chem [internet], 4(2), 26–28. https://doi.org/10.12691/wjac-4-2-3

    Article  CAS  Google Scholar 

  • Cocârţă, D. M., Neamţu, S., & Reşetar Deac, A. M. (2016). Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. International Journal of Environmental Science and Technology, 13(8), 2025–2036. https://doi.org/10.1007/s13762-016-1031-2

    Article  CAS  Google Scholar 

  • da Silva, D. C., Lopes, P. M. O., da Silva, M. V., de Albuquerque Moura, G. B., Nascimento, C. R., Brito, J. I. B., de França e Silva, E. F., Rolim, M. M., & de Lima, R. P. (2021). Principal component analysis and biophysical parameters in the assessment of soil salinity in the irrigated perimeter of Bahia, Brazil. Journal of South American Earth Sciences, 112https://doi.org/10.1016/j.jsames.2021.103580

  • Duffus, J. H. (2002). ‘Heavy metals’ - a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793

    Article  CAS  Google Scholar 

  • Elemile, O. O., Ibitogbe, E. M., Folorunso, O. P., Ejiboye, P. O., & Adewumi, J. R. (2021). Principal component analysis of groundwater sources pollution in Omu-Aran Community, Nigeria”. Environmental Earth Sciences 80(20), 1–16. https://doi.org/10.1007/s12665-021-09975-y

  • Goyer. (1997). “TOXIC AND ESSENTIAL METAL.Pdf." Toxic and Essential Metal Interactions (Annual Review of Nutrition), 17(1), 37–50.

  • Gran-Scheuch, A., Ramos-Zuñiga, J., Fuentes, E., Bravo, D., & Pérez-Donoso, J. M. (2020). Effect of co-contamination by PAHs and heavy metals on bacterial communities of diesel contaminated soils of South Shetland Islands Antarctica. Microorganisms, 8(11), 1749.

    Article  CAS  Google Scholar 

  • Gradilla-Hernández, M. S., de Anda, J., Garcia-Gonzalez, A., Meza-Rodríguez, D., Yebra Montes, C., & Perfecto-Avalos, Y. (2020) Multivariate water quality analysis of Lake Cajititlán, Mexico. Environmental Monitoring and Assessment, 192(1). https://doi.org/10.1007/s10661-019-7972-4

  • Gupta, V. 2020. Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. In Environmental Concerns and Sustainable Development (pp. 113–127). Springer, Singapore.

  • Han, N. M. I. M., Latif, M. T., Othman, M., Dominick, D., Mohamad, N., Juahir, H., & Tahir, N. M. (2014). Composition of selected heavy metals in road dust from Kuala Lumpur city centre. Environmental Earth Sciences, 72(3), 849–859.

    Article  CAS  Google Scholar 

  • Herojeet, R., Rishi, M. S., Lata, R., & Sharma, R. (2016). Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management, 2(1), 39–53. https://doi.org/10.1007/s40899-015-0039-y

    Article  Google Scholar 

  • Kalpakjian, S., Schmid, S. R., & Musa, H. (2011). Manufacturing engineering and technology. In Machining.

  • Kardanpour, Z., Jacobsen, O. S., & Esbensen, K. H. (2014). Soil heterogeneity characterization using PCA (xvariogram) - multivariate analysis of spatial signatures for optimal sampling purposes. Chemometrics and Intelligent Laboratory Systems, 136, 24–35. https://doi.org/10.1016/j.chemolab.2014.04.020

    Article  CAS  Google Scholar 

  • Lawal, O., Arokoyu, S. B., & Udeh, I. I. (2015). Assessment of automobile workshops and heavy metal pollution in a typical urban environment in sub-Saharan Africa. Environmental Research, Engineering and Management, 71(1), 27–35.

    Article  Google Scholar 

  • Leite, C. C., de Jesus, A., Kolling, L., Ferrão, M. F., Samios, D., & Silva, M. M. (2018). Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 142, 62–67.

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Esmaeilzadeh, M., Taghavi, M., Yousefi, M., Yousefi, Z., Sedighi, F., & Javan, S. (2020). Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biological Trace Element Research, 195(1), 343–352. https://doi.org/10.1007/s12011-019-01816-1

    Article  CAS  Google Scholar 

  • Muhammad, A. Jamil, M. & Yusoff, I. (2014). Soil contamination, risk assessment and remediation. Environmental Risk Assessment of Soil Contamination, 3–56. https://doi.org/10.5772/57287

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • National Population Commission, (NPC). 2013. Report of Nigeria’s National Population Commission on the 2006 Census. Population Council, 33(1), 206–10.

  • Naser, H. M., Sultana, S., Gomes, R., & Noor, S. (2012). Heavy metal pollution of soil and vegetable grown near roadside at Gazipur. Bangladesh Journal of Agricultural Research, 37(1), 9–17.

    Article  Google Scholar 

  • Nduka, J. K., Kelle, H. I., & Amuka, J. O. (2019). Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria. Toxicology Reports, 6, 449–56. https://doi.org/10.1016/j.toxrep.2019.05.007

  • Nwachukwu, M. A., Feng, H., & Alinnor, J. (2011). Trace metal dispersion in soil from auto-mechanic village to urban residential areas in Owerri, Nigeria. Procedia Environmental Sciences, 4, 310–322. https://doi.org/10.1016/j.proenv.2011.03.036

    Article  CAS  Google Scholar 

  • Olatunde, K. A., Sosanya, P. A., Bada, B. S., Ojekunle, Z. O., & Abdussalaam, S. A. (2020). Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Scientific African, 9, e00496. https://doi.org/10.1016/j.sciaf.2020.e00496

    Article  Google Scholar 

  • Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 05(11), 970–982. https://doi.org/10.4236/jep.2014.511098

    Article  CAS  Google Scholar 

  • Oloye, F. F., Ololade, I. A., Oluwole, O. D., Bello, M. O., Oluyede, O. P., & Ololade, O. (2014). Fate and potential mobility of arsenic (As) in the soil of mechanic workshops. Environment and Pollution, 3(4), 70.

    Article  CAS  Google Scholar 

  • Papanikolaou, G., Tzilianos, M., Christakis, J. I., Bogdanos, D., Tsimirika, K., MacFarlane, J., & Nemeth, E. (2005). Hepcidin in iron overload disorders. Blood, 105(10), 4103–4105.

    Article  CAS  Google Scholar 

  • Park, S., Ku, Y. K., Seo, M. J., Kim, D. Y., Yeon, J. E., Lee, K. M., Jeong, S. C., Yoon, W. K., Harn, C. H., & Kim, H. M. (2006). Principal component analysis and discriminant analysis (PCA-DA) for discriminating profiles of terminal restriction fragment length polymorphism (T-RFLP) in soil bacterial communities. Soil Biology and Biochemistry, 38(8), 2344–2349. https://doi.org/10.1016/j.soilbio.2006.02.019

    Article  CAS  Google Scholar 

  • Pradesh, A., Dasaram, B., Satyanarayanan, M., Sudarshan, V., & Krishna, A. K. (2011). Assessment of soil contamination in Patancheru Industrial Area. Earth, 3(3), 214–220.

  • Sadick, A., Amfo-Otu, R., Acquah, S. J., Nketia, K. A., Asamoah, E., & Adjei, E. O. (2015). Assessment of heavy metal contamination in soils around auto mechanic workshop clusters in central agricultural station, Kumasi-Ghana. Applied Research Journal, 1(2), 12–19.

    Google Scholar 

  • Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., Venglovsky, J., Szaboova, T., & Kovacova, S. (2018). Pollution of surface and ground water by sources related to agricultural activities. Frontiers in Sustainable Food Systems, 2https://doi.org/10.3389/fsufs.2018.00042.

  • Sayadi, M. H., & Sayyed, M. R. G. (2011). Comparative assessment of baseline concentration of the heavy metals in the soils of Tehran (Iran) with the comprisable reference data. Environmental Earth Sciences, 63(6), 1179–1188.

    Article  CAS  Google Scholar 

  • Shafie, N. A., Aris, A. Z., & Haris, H. (2014). Geoaccumulation and distribution of heavy metals in the urban river sediment. International Journal of Sediment Research, 29(3), 368–377.

    Article  Google Scholar 

  • Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. In John Wiley & Sons.

  • Soriano, A., Pallarés, S., Pardo, F., Vicente, A. B., Sanfeliu, T., & Bech, J. (2012). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. Journal of Geochemical Exploration, 113, 36–44. https://doi.org/10.1016/j.gexplo.2011.03.006

  • Streitberger, H. J., & Dossel, K. F. (Eds.). (2008). Automotive paints and coatings. John Wiley & Sons.

  • Sun, L., Geng, Y., Sarkis, J., Yang, M., Xi, F., Zhang, Y., Xue, B., Luo, Q., Ren, W., & Bao, T. (2013). Measurement of Polycyclic Aromatic Hydrocarbons (PAHs) in a Chinese Brownfield Redevelopment Site: The Case of Shenyang. Ecological Engineering, 53, 115–119. https://doi.org/10.1016/j.ecoleng.2012.12.023

  • Tripathi, M., & Singal, S. K. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of River Ganga India. Ecological Indicators, 96, 430–36.  https://doi.org/10.1016/j.ecolind.2018.09.025

  • Xiang, M., Li, Y., Yang, J., Li, Y., Li, F., Hu, B., & Cao, Y. (2020). Assessment of heavy metal pollution in soil and classification of pollution risk management and control zones in the industrial developed city. Environmental Management, 66(6), 1105–1119. https://doi.org/10.1007/s00267-020-01370-w

  • Yang, Y., Yang, X., He, M., & Christakos, G. (2020). Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena, 185, 104297. https://doi.org/10.1016/j.catena.2019.104297

  • Zhiyuan, W., Dengfeng, W., Huiping, Z., & Zhiping, Q. I. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences, 10, 1946–1952.

    Article  Google Scholar 

Download references

Acknowledgements

My special thanks go to Almighty God for granting me wisdom throughout the research program. I especially appreciate my supervisor, Dr. A. J. Gana, who has contributed immensely to this project. I am grateful for his words of encouragement. I sincerely appreciate my co-supervisor, Dr. O. O. Elemile, for his counsel, expert knowledge, and recommendations. I appreciate all the lab technicians, Mr. O. E. Ajayi, Engr. O. O. Ibitoye, Mr. Peter, and Mrs. Yemisi, for their assistance in carrying out the laboratory analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study design. Material preparation and data collection analysis were performed by Ejigboye praise oladapo. Analysis was carried out by Mr. Praise Ejigboye, Mr. Enoch Ibitogbe, and Dr. Olugbenga Elemile. Dr. Abu Gana worked on the review. The first draft of the manuscript was written by Ejigboye, praise Oladapo, and all authors commented on previous versions of the manuscript. Mr. Opeyemi Olajide and Olanrewaju Ibitoye review the manuscript and made corrections. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. O. Ejigboye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elemile, O.O., Gana, A.J., Ejigboye, P.O. et al. Analysis of potentially toxic elements from selected mechanical workshops using the geo-accumulation index and principal component analysis in Omu-Aran Community, Nigeria. Environ Monit Assess 195, 276 (2023). https://doi.org/10.1007/s10661-022-10800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10800-7

Keywords

Navigation