Skip to main content

Advertisement

Log in

Baseline assessment of the hydrological network and land use in riparian buffers of Pampean streams of Uruguay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The integrated assessment of stream networks and terrestrial land use contributes a critical foundation for understanding and mitigating potential impacts on stream ecology. Riparian zone delineation and management is a key component for regulating water quality, particularly in agricultural watersheds. We present a national assessment of riparian zone land uses according to stream order for the entire hydrological network in the Uruguayan landscape in Southeastern South America. We classified over 82,500 km of streams and rivers in Uruguay into seven Strahler order classes and delineated riparian buffers of 100 and 500 m, depending on stream order, covering a total of 13% of the terrestrial land area in Uruguay. Natural vegetation cover in riparian zones averaged 77% among basins, whereby natural grassland dominated first and second order stream buffers at 58% and 49%, respectively. This highlighted the importance of grasslands in headwater regions of the country. Riparian forests formed corridors along larger streams, representing a mere 9% of buffers in first order streams but reaching 46% of buffers of 6th order streams. Among the six major basins of Uruguay, we found differences in the relative importance of riparian forests and crop cover in headwater stream riparian zones, as well as differences in relative crop cover within riparian zones. Results show that streams in subtropical grassland landscapes originate in open grassland environments, which has major implications for thermal regimes, carbon inputs, and stream biodiversity. Riparian buffer management should consider geographic differences among different basins and ecoregions within Uruguay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data available upon request.

Code availability

Not applicable.

References

  • Achkar, M., Cayssials Brissolese, R. L., Domínguez, A., & Pesce, F. (2004). Hacia un Uruguay sustentable: gestión integrada de cuencas hidrográficas.

  • Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. (2007). The role of headwater streams in downstream water quality. JAWRA Journal of the American Water Resources Association, 43(1), 41–59.

    Article  CAS  Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284.

    Article  Google Scholar 

  • ANA. (2021). Agência Nacional de Águas e Saneamento Básico (ANA). Hydrological data and shapefiles, Brazil. Retrieved April 1, 2021, from https://www.gov.br/ana/pt-br

  • Arocena, R., Chalar, G., & Pacheco, J. P. (2018). Agriculture and elevation are the main factors for Pampasic stream habitat and water quality. Environmental Monitoring and Assessment, 190(4), 1–22.

    Article  Google Scholar 

  • Aubriot, L., Zabaleta, B., Bordet, F., Sienra, D., Risso, J., Achkar, M., & Somma, A. (2020). Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): Towards an early warning system. Water Research, 181, 115944.

    Article  CAS  Google Scholar 

  • Baeza, S., & Paruelo, J. M. (2018). Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 238–249.

    Article  Google Scholar 

  • Baeza, S., & Paruelo, J. M. (2020). Land use/land cover change (2000–2014) in the Rio de la Plata grasslands: An analysis based on MODIS NDVI time series. Remote Sensing, 12(3), 381.

    Article  Google Scholar 

  • Bardgett, R. D., Bullock, J. M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., Chomel, M., Durigan, G., Fry, L., & E., & Johnson, D. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2(10), 720–735.

    Article  Google Scholar 

  • Bernardi, R. E., Buddeberg, M., Arim, M., & Holmgren, M. (2019). Forests expand as livestock pressure declines in subtropical South America. Ecology and Society, 24(2).

  • Bernardi, R. E., Holmgren, M., Arim, M., & Scheffer, M. (2016). Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecology and Management, 363, 212–217.

    Article  Google Scholar 

  • Borthagaray, A. I., Teixeira-de Mello, F., Tesitore, G., Ortiz, E., Illarze, M., Pinelli, V., Urtado, L., Raftopulos, P., González-Bergonzoni, I., & Abades, S. (2020). Community isolation drives lower fish biomass and species richness, but higher functional evenness, in a river metacommunity. Freshwater Biology, 65(12), 2081–2095.

    Article  Google Scholar 

  • Brazeiro, A., Achkar, M., Toranza, C., & Bartesaghi, L. (2020). Agricultural expansion in Uruguayan grasslands and priority areas for vertebrate and woody plant conservation. Ecology and Society, 25(1).

  • Brazeiro, A., Panario, D., Soutullo, A., Gutiérrez, O., Segura, A., & Mai, P. (2015). Identificación y delimitación de eco-regiones de Uruguay. In A. Brazeiro (Ed.), Eco-regiones de Uruguay: Biodiversidad, presiones y conservación (pp. 46–59). Facultad de Ciencias.

    Google Scholar 

  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61.

    Article  Google Scholar 

  • Brussa, C. A., & Grela, I. A. (2007). Flora Arbórea del Uruguay: Con énfasis en las especies de Rivera y Tacuarembó. COFUSA.

  • Cal, A., Álvarez, A., Petraglia, C., Dell’ Aqua, M., López, N., & Fernandez, V. M. (2011). Mapa de Cobertura del Suelo de Uruguay = Land Cover Classification System. Montevideo: Mosca.

  • Campo, J., & Sancholuz, L. (1998). Biogeochemical impacts of submerging forests through large dams in the Rı́o Negro, Uruguay. Journal of Environmental Management, 54(1), 59–66.

    Article  Google Scholar 

  • Canhoto, C., Calapez, R., Gonçalves, A. L., & Moreira-Santos, M. (2013). Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshwater Science, 32(2), 411–424.

    Article  Google Scholar 

  • CARU, C. C. (2019). Informe de resultados de los primeros seis meses de monitoreo del Subprograma 1: Monitoreo de la calidad de agua, sedimento y biota en el río Uruguay. Retrieved June 1, 2021, from https://www.caru.org.uy/web/2020/01/informe-de-resultados-de-los-primeros-seis-meses-de-monitoreo-del-subprograma-1-monitoreo-de-la-calidad-de-agua-sedimento-y-biota-en-el-rio-uruguay/

  • Chalar, G., Arocena, R., Pacheco, J. P., & Fabián, D. (2011). Trophic assessment of streams in Uruguay: A trophic State Index for Benthic Invertebrates (TSI-BI). Ecological Indicators, 11(2), 362–369.

    Article  CAS  Google Scholar 

  • Chalar, G., Delbene, L., González-Bergonzoni, I., & Arocena, R. (2013). Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators, 24, 582–588.

    Article  Google Scholar 

  • Clarke, A., Mac Nally, R., Bond, N., & Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: A review. Freshwater Biology, 53(9), 1707–1721.

    Article  Google Scholar 

  • Cole, L. J., Stockan, J., & Helliwell, R. (2020). Managing riparian buffer strips to optimise ecosystem services: A review. Agriculture, Ecosystems & Environment, 296, 106891.

    Article  CAS  Google Scholar 

  • Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E., Cumberlidge, N., Darwall, W. R., Pollock, C., Richman, N. I., Soulsby, A. M., & Böhm, M. (2014). Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography, 23(1), 40–51.

    Article  Google Scholar 

  • Conde, D., Arocena, R., & Rodríguez-Gallego, L. (2002). Recursos acuáticos superficiales de Uruguay: Ambientes algunas problemáticas y desafíos para la gestión (I y II). Ambios, 3(10), 5–9.

    Google Scholar 

  • Conde, D., & Sommaruga, R. (1999). A review of the state of limnology in Uruguay. Limnology in Developing Countries, 2, 1–31.

    Google Scholar 

  • Coutinho, H. L., Noellemeyer, E., Jobbagy, E., Jonathan, M., & Paruelo, J. (2009). Impacts of land use change on ecosystems and society in the Rio de La Plata Basin. Applying Ecological Knowledge to Landuse Decisions, 56, 65.

    Google Scholar 

  • de Mello, K., Valente, R. A., Randhir, T. O., dos Santos, A. C. A., & Vettorazzi, C. A. (2018). Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. CATENA, 167, 130–138.

    Article  Google Scholar 

  • Dodds, W. K. (2007). Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology & Evolution, 22(12), 669–676.

    Article  Google Scholar 

  • Doretto, A., Piano, E., & Larson, C. E. (2020). The River Continuum Concept: Lessons from the past and perspectives for the future. Canadian Journal of Fisheries and Aquatic Sciences, 77(11), 1853–1864.

    Article  Google Scholar 

  • Downing, J. A., Cole, J. J., Duarte, C., Middelburg, J. J., Melack, J. M., Prairie, Y. T., Kortelainen, P., Striegl, R. G., McDowell, W. H., & Tranvik, L. J. (2012). Global abundance and size distribution of streams and rivers. Inland Waters, 2(4), 229–236.

    Article  Google Scholar 

  • Drozd, A., de Tezanos Pinto, P., Fernandez, V., Bazzalo, M., Bordet, F., & Ibañez, G. (2019). Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: High-and medium-spatial resolution satellite algorithm simulation. Marine and Freshwater Research, 71(5), 593–605.

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., & Stiassny, M. L. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.

    Article  Google Scholar 

  • Dugdale, S. J., Malcolm, I. A., Kantola, K., & Hannah, D. M. (2018). Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. Science of the Total Environment, 610, 1375–1389.

    Article  Google Scholar 

  • Ernst, F., Alonso, B., Colazzo, M., Pareja, L., Cesio, V., Pereira, A., Márquez, A., Errico, E., Segura, A. M., & Heinzen, H. (2018). Occurrence of pesticide residues in fish from south American rainfed agroecosystems. Science of the Total Environment, 631, 169–179.

    Article  Google Scholar 

  • FAO. (2019). FAOStat. Retrieved February 1, 2021, from https://www.fao.org/faostat/en/#data/QC

  • Felden, J., González-Bergonzoni, I., Rauber, A. M., da Luz Soares, M., Massaro, M. V., Bastian, R., & Reynalte-Tataje, D. A. (2021). Riparian forest subsidises the biomass of fish in a recently formed subtropical reservoir. Ecology of Freshwater Fish, 30(2), 197–210.

    Article  Google Scholar 

  • Finn, D. S., & Leroy Poff, N. (2005). Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology, 50(2), 243–261.

    Article  Google Scholar 

  • Forestry Law 15.939. (1987). [Ley Forestal - Fondo Forestal - Recursos Naturales]. (Uruguay). Retrieved March 10, 2021, from https://www.impo.com.uy/bases/leyes/15939-1987

  • Gautreau, P. (2006). GEOGRAPHIES D'UNE" DESTRUCTION" DES FORETS URUGUAYENNES. Récits de crise et résilience forestière dans le Río de la Plata (XVIIIe-XXe siècle) Université des Sciences et Technologie de Lille-Lille I].

  • Gautreau, P. (2009). The fate of Uruguayan forests (1590–1820): Between destruction and unregulated uses. Histoire Societes Rurales, 31(1), 45–66.

    Article  Google Scholar 

  • Gautreau, P. (2010). Rethinking the dynamics of woody vegetation in Uruguayan campos, 1800–2000. Journal of Historical Geography, 36(2), 194–204.

    Article  Google Scholar 

  • Getirana, A., Kumar, S., Girotto, M., & Rodell, M. (2017). Rivers and floodplains as key components of global terrestrial water storage variability. Geophysical Research Letters, 44(20), 10,359–310,368.

  • Gleyzer, A., Denisyuk, M., Rimmer, A., & Salingar, Y. (2004). A fast recursive Gis algorithm for computing Strahler stream order in braided and nonbraided networks 1. JAWRA Journal of the American Water Resources Association, 40(4), 937–946.

    Article  Google Scholar 

  • González-Bergonzoni, I., Kristensen, P., Baattrup-Pedersen, A., Kristensen, E., Alnoee, A., & Riis, T. (2018). Riparian forest modifies fuelling sources for stream food webs but not food-chain length in lowland streams of Denmark. Hydrobiologia, 805(1), 291–310.

    Article  Google Scholar 

  • Goyenola, G., Meerhoff, M., Teixeira-de Mello, F., González-Bergonzoni, I., Graeber, D., Fosalba, C., Vidal, N., Mazzeo, N., Ovesen, N., & Jeppesen, E. (2015). Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences, 19(10), 4099–4111.

    Article  CAS  Google Scholar 

  • Graesser, J., Aide, T. M., Grau, H. R., & Ramankutty, N. (2015). Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 10(3), 034017.

    Article  Google Scholar 

  • Harrel, R. C., & Dorris, T. C. (1968). Stream order, morphometry, physico-chemical conditions, and community structure of benthic macroinvertebrates in an intermittent stream system. American Midland Naturalist, 220–251.

  • Hawes, E., & Smith, M. (2005). Riparian buffer zones: Functions and recommended widths. Eightmile River Wild and Scenic Study Committee, 15, 2005.

    Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.

    Article  Google Scholar 

  • Hughes, R. M., Kaufmann, P. R., & Weber, M. H. (2011). National and regional comparisons between Strahler order and stream size. Journal of the North American Benthological Society, 30(1), 103–121.

    Article  Google Scholar 

  • Hynes, H. (1975). The stream and its valley: With 4 figures and 2 tables in the text. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen, 19(1), 1–15.

    Google Scholar 

  • Ibañez, C., Belliard, J., Hughes, R. M., Irz, P., Kamdem-Toham, A., Lamouroux, N., Tedesco, P. A., & Oberdorff, T. (2009). Convergence of temperate and tropical stream fish assemblages. Ecography, 32(4), 658–670.

    Article  Google Scholar 

  • IDE. (2020). Infraestructura de Datos Espaciales (IDE) Uruguay. [Cursos de agua] shapefile.

  • IUCN. (2019). International Union for Conservation of Nature (IUCN). The IUCN red list of threatened species, version 2019–1, IUCN. Retrieved September 15, 2020, from www.iucnredlist.org

  • Juárez, R., Crettaz Minaglia, M. C., Aguer, I., Juárez, I., Gianello, D., Ávila, E., & Roldán, C. (2016). Aplicación de índices bióticos de calidad de agua en cuatro arroyos de la cuenca del río Gualeguaychú (entre Ríos, Argentina).

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110–127.

    Google Scholar 

  • Kim, J. Y., Atique, U., & An, K. -G. (2021). Relative abundance and invasion dynamics of alien fish species linked to chemical conditions, Ecosystem Health, Native Fish Assemblage, and Stream Order. Water, 13(2), 158.

    Article  CAS  Google Scholar 

  • Kruk, C., Martínez, A., de la Escalera, G. M., Trinchin, R., Manta, G., Segura, A. M., Piccini, C., Brena, B., Yannicelli, B., & Fabiano, G. (2021). Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. Science of the Total Environment, 754, 142362.

    Article  CAS  Google Scholar 

  • Kuglerová, L., Jyväsjärvi, J., Ruffing, C., Muotka, T., Jonsson, A., Andersson, E., & Richardson, J. S. (2020). Cutting edge: A comparison of contemporary practices of riparian buffer retention around small streams in Canada, Finland, and Sweden. Water Resources Research, 56(9), e2019WR026381.

  • Lee, P., Smyth, C., & Boutin, S. (2004). Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management, 70(2), 165–180.

    Article  CAS  Google Scholar 

  • Lorion, C. M., & Kennedy, B. P. (2009). Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshwater Biology, 54(1), 165–180.

    Article  CAS  Google Scholar 

  • Lowe, W. H., & Likens, G. E. (2005). Moving headwater streams to the head of the class. BioScience, 55(3), 196–197.

    Article  Google Scholar 

  • Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., & Brinsfield, R. B. (1997). Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management, 21(5), 687–712.

    Article  CAS  Google Scholar 

  • Magdaleno, F., & Martinez, R. (2014). Evaluating the quality of riparian forest vegetation: The Riparian Forest Evaluation (RFV) index. Forest Systems, 23(2), 259–272.

    Article  Google Scholar 

  • Márquez, J. A., Cibils, L., Principe, R. E., & Albariño, R. J. (2015). Stream macroinvertebrate communities change with grassland afforestation in central Argentina. Limnologica, 53, 17–25.

    Article  Google Scholar 

  • Mayer, P. M., Reynolds, S. K., Jr., McCutchen, M. D., & Canfield, T. J. (2007). Meta-analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality, 36(4), 1172–1180.

    Article  CAS  Google Scholar 

  • MGAP. (2018). Direccion General Forestal - Ministerio de Ganaderia Agricultura y Pesca (MGAP). Native forest cover in Uruguay [shapefile]. Retrieved December 1, 2019, from https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/monitoreo-bosques

  • MGAP. (2021). Carta de suelos de prioridad forestal. Ministerio de Ganaderia Agricultura y Pesca (MGAP). Retrieved December 10, 2019, from https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/politicas-y-gestion/

  • Modernel, P., Rossing, W. A., Corbeels, M., Dogliotti, S., Picasso, V., & Tittonell, P. (2016). Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters, 11(11), 113002.

    Article  Google Scholar 

  • Moraes, A. B., Wilhelm, A. E., Boelter, T., Stenert, C., Schulz, U. H., & Maltchik, L. (2014). Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment, 186(11), 7063–7074.

    Article  CAS  Google Scholar 

  • MVOTMA. (2018). Plan Nacional de Aguas 2018. Retrieved February 10, 2021, from https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/planes/plan-nacional-aguas

  • MVOTMA. (2019). Geoservicios. Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente. Retrieved November 5, 2019, from https://www.ambiente.gub.uy/oan/geoportal/

  • Osborne, L., & Kovacic, D. (1993). The influence of riparian vegetation on nutrient losses in a Midwestern stream watershed. Freshwater Biology, 29, 243–258.

    Article  Google Scholar 

  • Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., Boldrini, I. I., Both, R., & Forneck, E. D. (2007). Brazil’s neglected biome: The South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics, 9(2), 101–116.

    Article  Google Scholar 

  • Pease, A. A., & González-Díaz, A. A., Rodiles-Hernández, R., & Winemiller, K. O. (2012). Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57(5), 1060–1075.

  • QGIS Development Team. (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Retrieved November 1, 2019, from http://qgis.osgeo.org

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved December 1, 2020, from https://www.R-project.org

  • Ramos, M. A. G., Bueno de Oliveira, E. S., Pião, A. C. S., Nalin de Oliveira Leite, D. A., & de Franceschi de Angelis, D. (2016). Water quality index (WQI) of Jaguari and Atibaia Rivers in the region of Paulínia, São Paulo, Brazil. Environmental Monitoring and Assessment, 188(5), 1–14.

  • Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., & Ormerod, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873.

    Article  Google Scholar 

  • Riley, W. D., Potter, E. C., Biggs, J., Collins, A. L., Jarvie, H. P., Jones, J. I., Kelly-Quinn, M., Ormerod, S. J., Sear, D. A., & Wilby, R. L. (2018). Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 645, 1598–1616.

    Article  CAS  Google Scholar 

  • Romero Soto, F. I., Cozano, M. A., Gangas Fuentealba, R., & Naulin Gysling, P. (2014). Zonas ribereñas: protección, restauración y contexto legal en Chile.

  • Silveira, L., & Alonso, J. (2009). Runoff modifications due to the conversion of natural grasslands to forests in a large basin in Uruguay. Hydrological Processes: An International Journal, 23(2), 320–329.

    Article  Google Scholar 

  • Silveira, L., Gamazo, P., Alonso, J., & Martínez, L. (2016). Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay. Hydrological Processes, 30(20), 3596–3608.

    Article  Google Scholar 

  • Sliva, L., & Williams, D. D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35(14), 3462–3472.

    Article  CAS  Google Scholar 

  • SNA. (2018). Plan de acción para la protección de la calidad ambiental de la cuenca del río santa lucía: Medidas de segunda generación.

  • Soutullo, A., Ríos, M., Zaldúa, N., & Teixeira-de-Mello, F. (2020). Soybean expansion and the challenge of the coexistence of agribusiness with local production and conservation initiatives: Pesticides in a Ramsar site in Uruguay. Environmental Conservation, 47(2), 97–103.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  • Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344–358.

    Article  Google Scholar 

  • Stutter, M., Baggaley, N., & Wang, C. (2020a). The utility of spatial data to delineate river riparian functions and management zones: a review. Science of the Total Environment, 143982.

  • Stutter, M., Graeber, D., & Weigelhofer, G. (2020b). Available dissolved organic carbon alters uptake and recycling of phosphorus and nitrogen from river sediments. Water, 12(12), 3321.

    Article  CAS  Google Scholar 

  • Stutter, M., Kronvang, B., Ó hUallacháin, D., & Rozemeijer, J. (2019). Current insights into the effectiveness of riparian management, attainment of multiple benefits, and potential technical enhancements. Journal of environmental quality, 48(2), 236-247.

  • Stutter, M. I., Chardon, W. J., & Kronvang, B. (2012). Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction. Journal of Environmental Quality, 41(2), 297–303.

    Article  CAS  Google Scholar 

  • Teixeira-de Mello, F., Meerhoff, M., Baattrup-Pedersen, A., Maigaard, T., Kristensen, P. B., Andersen, T. K., Clemente, J. M., Fosalba, C., Kristensen, E. A., & Masdeu, M. (2012). Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia, 684(1), 143–160.

    Article  Google Scholar 

  • Thorp, J. H., Thoms, M. C., & Delong, M. D. (2010). The riverine ecosystem synthesis: Toward conceptual cohesiveness in river science. Elsevier.

    Google Scholar 

  • Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., & Yuill, A. (2017). Characterizing streams and riparian areas with airborne laser scanning data. Remote Sensing of Environment, 192, 73–86.

    Article  Google Scholar 

  • Toranza, C. (2021). Distribución y diversidad del bosque serrano y de quebrada en Uruguay. Universidad de la República, Uruguay.]. Montevideo.

  • Toranza, C., Lucas, C., & Ceroni, M. (2019). Spatial distribution and tree cover of hillside and ravine forests in Uruguay: The challenges of mapping patchy ecosystems. Agrociencia Uruguay, 23(2), 135–146.

    Google Scholar 

  • Turunen, J., Markkula, J., Rajakallio, M., & Aroviita, J. (2019). Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams. Science of the Total Environment, 649, 495–503.

    Article  CAS  Google Scholar 

  • Valkama, E., Usva, K., Saarinen, M., & Uusi-Kämppä, J. (2019). A meta-analysis on nitrogen retention by buffer zones. Journal of Environmental Quality, 48(2), 270–279.

    Article  CAS  Google Scholar 

  • Vander Vorste, R., McElmurray, P., Bell, S., Eliason, K. M., & Brown, B. L. (2017). Does stream size really explain biodiversity patterns in lotic systems? A Call for Mechanistic Explanations. Diversity, 9(3), 26.

    Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137.

    Article  Google Scholar 

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., & Liermann, C. R. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561.

  • Wenger, S. (1999). A review of the scientific literature on riparian buffer width, extent and vegetation.

  • Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.

    Google Scholar 

  • Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A., & Eitzel, M. (2010). A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. Journal of Environmental Quality, 39(1), 76–84.

    Article  CAS  Google Scholar 

  • Zhang, X. P., Zhang, L., McVicar, T. R., Van Niel, T. G., Li, L. T., Li, R., Yang, Q., & Wei, L. (2008). Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China. Hydrological Processes: An International Journal, 22(12), 1996–2004.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Arq. Rogelio Texeira and Dra. Mariel Bazzalo of CARU for their collaboration.

Funding

This research was funded in part by an Agreement between CENUR Litoral Norte—Universidad de la República and the Administrative Commission of the Uruguay River (Comisión Administradora del Río Uruguay—CARU). Author IGB and CL were further supported by the program for development of basic sciences in Uruguay (PEDECIBA) and the National System of Researchers of the National Agency for Innovation and Research (ANII). NG received financial support from ANII scholarship program and IS received financial support from the Postgraduate Academic Commission (CAP, Universidad de la República) scholarship program.

Author information

Authors and Affiliations

Authors

Contributions

Mary conducted all GIS processing and developed all maps and tables. Gonzalez contributed to manuscript. Gobel, Somma and Silva contributed to the text. Lucas coordinated the study and the writing. All authors contributed substantially to the text and interpretation of results.

Corresponding author

Correspondence to Christine M. Lucas.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary-Lauyé, A.L., González-Bergonzoni, I., Gobel, N. et al. Baseline assessment of the hydrological network and land use in riparian buffers of Pampean streams of Uruguay. Environ Monit Assess 195, 80 (2023). https://doi.org/10.1007/s10661-022-10684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10684-7

Keywords

Navigation