Skip to main content

Advertisement

Log in

Assessment of mangrove cover dynamics and its health status in the Gulf of Khambhat, Western India, using high-resolution multi-temporal satellite data and Google Earth Engine

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic activity is a major driving factor of greenhouse gas emission, leading to climate change worldwide. So, the best natural approach to lowering the carbon from the atmosphere is mangroves which have more potential to sequestrate carbon. But mangroves are under threat due to land use land cover change. This research has been carried out on the mangroves of Gulf of Khambhat, Gujarat, India, where anthropic activity is affecting the mangrove forest cover with spatiotemporal heterogeneity. In the present study, multi-temporal high-resolution satellite data AVNIR-2 (Advanced Visible and Near Infrared Radiometer type-2) and LISS-4 (Linear Imaging Self-Scanning Sensors-4) were used for the demarcation of various land use/land cover class (LULC), and change analysis and assessment of mangroves health for the years 2009, 2014, and 2019. The impact of saltpan/aquaculture on mangroves growth and its health status has been calculated by various MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data products such as gross primary productivity (GPP), enhanced vegetation index (EVI), and leaf area index (LAI) in Google Earth Engine (GEE), and field-based method was also considered. This study suggests that there is a marginal increase (17.11 km2) in mangrove cover during the assessment period 2009–2019; on other side, 65.42 km2 was degraded also. However, increase in saltpan/aquaculture is imposing an adverse effect on mangroves’ basal area, plant density, and productivity. Change analysis also suggests a reduction in healthy mangrove area (from 25.20 to 2.84 km2), which will have an impact on ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313–322. https://doi.org/10.4155/cmt.12.20

    Article  CAS  Google Scholar 

  • Awty-Carroll, K., Bunting, P., Hardy, A., & Bell, G. (2019). Using continuous change detection and classification of landsat data to investigate long-term mangrove dynamics in the Sundarbans region. Remote Sensing, 11(23). https://doi.org/10.3390/rs11232833

  • Bal, G., Mallik, K., Sahu, S. S., & Banerjee, K. (2018). Study on above ground biomass and carbon of the selective mangrove species of Bhitarkanika wildlife sanctuary, Odisha. National Conference on Waste to Energy, Carbon Capture and Storage, 328–336.

  • Bann, C. (1997). An economic analysis of alternative mangrove management strategies in Koh Kong Province, Cambodia. https://iwlearn.net/files/pdfs/Bann%201997_Alternative%20mangrove%20management%20strategies%20in%20Cambodia.pdf

  • Beentje, H., & Bandeira, S. (2007). Field guide to the mangrove trees of Africa and Madagascar. Kew Publishing.

  • Bhavsar, D. O., Jasrai, Y. T., Pandya, H. A., Singh, V., Patel, A., & Kalubarme, M. H. (2014). Monitoring mangrove status using remote sensing and geo-informatics in Piram Island, Gulf of Khambhat, Gujarat State, India. International Journal of Scientific & Engineering Research, 5(6). https://www.ijser.org

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. https://doi.org/10.1038/nature11148

    Article  CAS  Google Scholar 

  • Cardinale, B. J., Srivastava, D. S., Emmett Duffy, J., Wright, J. P., Downing, A. L., Sankaran, M., & Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443(7114), 989–992. https://doi.org/10.1038/nature05202

    Article  CAS  Google Scholar 

  • Chellamani, P., Prakash Singh, C., & Panigrahy, S. (2014). Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Tropical Ecology, 55(2), 245–253. www.tropecol.com

  • Chen, P., Liew, S. C., & Kwoh, L. K. (2017, July). Mangrove mapping and change detection using satellite imagery. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2017.8128306

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. v., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630). https://doi.org/10.1038/387253a0

  • Cougo, M., Souza-Filho, P., Silva, A., Fernandes, M., Santos, J., Abreu, M., Nascimento, W., & Simard, M. (2015). Radarsat-2 backscattering for the modeling of biophysical parameters of regenerating mangrove forests. Remote Sensing, 7(12). https://doi.org/10.3390/rs71215873

  • Devi, V., & Pathak, B. (2016). Ecological studies of mangroves species in Gulf of Khambhat, Gujarat. Tropical Plant Research, 3(3). https://doi.org/10.22271/tpr.2016.v3.i3.070

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123

    Article  CAS  Google Scholar 

  • Duke, N., Ball, M., & Ellison, J. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1), 27–47.

    Article  Google Scholar 

  • Duke, N. C., Meynecke, J.-O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A world without mangroves? Science, 317(5834). https://doi.org/10.1126/science.317.5834.41b

  • Elwin, A., Bukoski, J. J., Jintana, V., Robinson, E. J. Z., & Clark, J. M. (2019). Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Scientific Reports, 9(1), 18275. https://doi.org/10.1038/s41598-019-54893-6

    Article  CAS  Google Scholar 

  • Fang, H., & Liang, S. (2014). Leaf area index models. In Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09076-X

  • FAO. (2002). FAO yearbook. Fishery statistics: Commodities.

  • FAO. (2007). The world’s mangroves 1980-2005. Food and Agriculture Organization of the United Nations.

  • FSI. (2019). India state of forest report 2019.

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4). https://doi.org/10.1088/1748-9326/2/4/045023

  • Giri, C., Long, J., Abbas, S., Murali, R. M., Qamer, F. M., Pengra, B., & Thau, D. (2015). Distribution and dynamics of mangrove forests of South Asia. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2014.01.020

    Article  Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

    Article  Google Scholar 

  • Giri, C., Pengra, B., Zhu, Z., Singh, A., & Tieszen, L. L. (2007). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuarine, Coastal and Shelf Science, 73(1–2). https://doi.org/10.1016/j.ecss.2006.12.019

  • Gunawardena, M., & Rowan, J. S. (2005). Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environmental Management, 36(4). https://doi.org/10.1007/s00267-003-0286-9

  • Held, A., Ticehurst, C., Lymburner, L., & Williams, N. (2003). High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. International Journal of Remote Sensing, 24(13). https://doi.org/10.1080/0143116031000066323

  • Hoang Tri, N., Adger, W., & Kelly, P. (1998). Natural resource management in mitigating climate impacts: The example of mangrove restoration in Vietnam. Global Environmental Change, 8(1). https://doi.org/10.1016/S0959-3780(97)00023-X

  • IPCC. (2014). Climate change 2014 synthesis report (R. K. Pachauri & L. A. Meyer, Eds.; First). Intergovernmental Panel on Climate Change.

  • Ishtiaque, A., Myint, S. W., & Wang, C. (2016). Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.06.200

    Article  Google Scholar 

  • Jia, M., Wang, Z., Zhang, Y., Ren, C., & Song, K. (2015). Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province, China, influenced by human and natural factors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1). https://doi.org/10.1109/JSTARS.2014.2333527

  • Kamal, M., & Phinn, S. (2011). Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sensing, 3(10). https://doi.org/10.3390/rs3102222

  • Kathiresan, K. (2012). Importance of mangrove ecosystem. International Journal of Marine Science. https://doi.org/10.5376/ijms.2012.02.0010

    Article  Google Scholar 

  • Khare, S. S., & Shah, D. G. (2019). Structure and temporal changes in the mangrove vegetation of Jambusar Taluka of Gulf of Khambhat, India. Tropical Ecology, 60(3). https://doi.org/10.1007/s42965-019-00043-y

  • Kovacs, J. M., Lu, X. X., Flores-Verdugo, F., Zhang, C., Flores de Santiago, F., & Jiao, X. (2013). Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2013.05.004

    Article  Google Scholar 

  • Kripa, M., Mudaliar, A., Lele, N., Mankad, A. U., & Murthy, T. V. R. (2019). Spatio-temporal variations in mangrove vegetation in conjunction with related environmental factors in Pichavaram (India) 1996-2016. International Journal of Scientific Research in Biological Sciences, 6(2). https://doi.org/10.26438/ijsrbs/v6i2.1525

  • Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5). https://doi.org/10.3390/rs3050878

  • Kumar, A., Stupp, P., Dahal, S., Remillard, C., Bledsoe, R., Stone, A., Cameron, C., Rastogi, G., Samal, R., & Mishra, D. R. (2017). A multi-sensor approach for assessing mangrove biophysical characteristics in Coastal Odisha, India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4). https://doi.org/10.1007/s40010-017-0441-y

  • Kumar, S., & Kumar, A. (2010). Waves and currents in tide-dominated location off Dahej, Gulf of Khambhat, India. Marine Geodesy, 33(2–3). https://doi.org/10.1080/01490419.2010.492299

  • Kumar, S. S., & Balaji, R. (2015). Tidal hydrodynamics along Gulf of Khambhat, West Coast of India. In G. S. Dwarakish (Ed.), Aquatic Procedia (Vol. 4). Elsevier. https://doi.org/10.1016/j.aqpro.2015.02.007

  • Long, J. B., & Giri, C. (2011). Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors, 11(3). https://doi.org/10.3390/s110302972

  • Loreau, M. (2010). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 49–60. https://doi.org/10.1098/rstb.2009.0155

    Article  Google Scholar 

  • Macamo, C. C. F., Balidy, H., Bandeira, S., & Kairo, J. (2015). Mangrove transformation in the Incomati Estuary, Maputo Bay, Mozambique. Western Indian Ocean Journal of Marine Science, 14(1 & 2), 11–22.

    Google Scholar 

  • Malik, A., Fensholt, R., & Mertz, O. (2015). Economic valuation of mangroves for comparison with commercial aquaculture in South Sulawesi, Indonesia. Forests, 6(12). https://doi.org/10.3390/f6093028

  • Mandal, R. N., & Naskar, K. R. (2008). Diversity and classification of Indian mangroves: A review. Tropical Ecology, 49(2), 131–146.

    Google Scholar 

  • Maurya, P., & Kumari, R. (2021). Spatiotemporal variation of the nutrients and heavy metals in mangroves using multivariate statistical analysis, Gulf of Kachchh (India). Environmental Research. https://doi.org/10.1016/j.envres.2021.110803

    Article  Google Scholar 

  • Misra, A., & Balaji, R. (2015). A study on the shoreline changes and land-use/land-cover along the South Gujarat Coastline. Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.08.311

    Article  Google Scholar 

  • Murray, B., Pendleton, L., Jenkins, W., & Sifleet, S. (2011). Green payments for blue carbon economic incentives for protecting threatened coastal habitats.

  • Nakhawa, A., Markad, S., Vichare, P., & Shirdhankar, M. (2012). Mapping and change detection of mangrove forest in Sakhartar estuary of Ratnagiri district, Maharashtra. International Multidisciplinary Research Journal, 2(8), 04–08. https://irjs.info/

  • Nautiyal, S., Bhaskar, K., & Imran Khan, Y. D. (2015). Methodology for biodiversity (flora and fauna) study. Springer. https://doi.org/10.1007/978-3-319-15464-0_2

    Book  Google Scholar 

  • Nayak, S., & Bahuguna, A. (2001). Application of remote sensing data to monitor mangroves and other coastal vegetation of India. Indian Journal of Marine Sciences, 30(4), 195–213.

    Google Scholar 

  • Pande, P. K. (2005). Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau Madhya Pradesh. Tropical Ecology, 46(2), 229–239.

    Google Scholar 

  • Pandey, C. N., & Pandey, R. (2013). Carbon sequestration by mangroves of Gujarat India. International Journal of Botany and Research, 3(2), 57–70. https://www.academia.edu/4525569/Carbon_Sequestration_by_mangroves_of_Gujarat_India

  • Parida, A., Das, A. B., & Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45(1). https://doi.org/10.1007/BF03030429

  • Pasha, S. V., Reddy, C. S., Jha, C. S., Rao, P. V. V. P., & Dadhwal, V. K. (2016). Assessment of land cover change hotspots in Gulf of Kachchh, India using multi-temporal remote sensing data and GIS. Journal of the Indian Society of Remote Sensing, 44(6), 905–913. https://doi.org/10.1007/s12524-016-0562-9

    Article  Google Scholar 

  • Patel, A., Singh, V., Mehmood, K., Kathota, J., Kalubarme, M. H., Pandya, C. H., Joshi, N., & Brahmabhatt Lomesh. (2014). Mapping and monitoring of mangroves in the coastal districts of Gujarat State using remote sensing and geo-informatics. Asian Journal of Geoinformatics, 14(1).

  • Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Ngoc Nam, V., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., & Yong, J. W. H. (2010). The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE, 5(4), e10095. https://doi.org/10.1371/journal.pone.0010095

    Article  CAS  Google Scholar 

  • Prerna, R., Naidu, V. S., Sukumaran, S., & Gajbhiye, S. N. (2015). Observed decadal changes in extent of mangroves and coral reefs in southern Gulf of Kachchh using principal component analysis and geo-spatial techniques: a case study. Journal of Coastal Conservation, 19(3). https://doi.org/10.1007/s11852-015-0385-9

  • Rudianto, R., Bengen, D. G., & Kurniawan, F. (2020). Causes and effects of mangrove ecosystem damage on carbon stocks and absorption in East Java, Indonesia. Sustainability, 12(24). https://doi.org/10.3390/su122410319

  • Ruitenbeek, H. J. (1992). EMDI environmental reports, 8 mangrove management: An economic analysis of management options with a focus on Bintuni Bay, Irian Jaya prepared by. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=48204680410D77158B8D4FB501D54256?doi=10.1.1.544.7409&rep=rep1&type=pdf

  • Saha, S., Burley, S. D., & Banerjee, S. (2018). Mixing processes in modern estuarine sediments from the Gulf of Khambhat, western India. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2017.12.010

    Article  Google Scholar 

  • Sathirathai, S. (1998). Economic valuation of mangroves and the roles of local communities in the conservation of natural resources. https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/15261/108378.pdf?sequence=39&isAllowed=y

  • Shah, K., Mody, K., Keshri, J., & Jha, B. (2010). Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. Journal of Molecular Catalysis B: Enzymatic, 67(1–2). https://doi.org/10.1016/j.molcatb.2010.07.010

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. University of Illinois press.

  • Shimu, S. A., Aktar, M., Afjal, M. I., Nitu, A. M., Uddin, Md. P., & al Mamun, Md. (2019). NDVI based change detection in Sundarban Mangrove Forest using remote sensing data. 2019 4th International Conference on Electrical Information and Communication Technology (EICT). https://doi.org/10.1109/EICT48899.2019.9068819

  • Shrestha, S., Miranda, I., Kumar, A., Pardo, M. L. E., Dahal, S., Rashid, T., Remillard, C., & Mishra, D. R. (2019). Identifying and forecasting potential biophysical risk areas within a tropical mangrove ecosystem using multi-sensor data. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2018.09.017

    Article  Google Scholar 

  • Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148). https://doi.org/10.1038/163688a0

  • Singh, J. K. (2020). Structural characteristics of mangrove forest in different coastal habitats of Gulf of Khambhat arid region of Gujarat, west coast of India. Heliyon, 6(8), e04685. https://doi.org/10.1016/j.heliyon.2020.e04685

    Article  Google Scholar 

  • Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J., & Maher, D. T. (2018). Mangrove mortality in a changing climate: An overview. Estuarine, Coastal and Shelf Science, 215, 241–249. https://doi.org/10.1016/j.ecss.2018.10.011

    Article  Google Scholar 

  • Spalding, M., Kainuma, M., & Collins, L. (2010). Worlds atlas of mangroves. Earthscan.

  • Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE, 12(6), e0179302. https://doi.org/10.1371/journal.pone.0179302

    Article  CAS  Google Scholar 

  • Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5). https://doi.org/10.1007/s11356-013-2376-4

  • Vijay, V., Biradar, R. S., Inamdar, A. B., Deshmukhe, G., Baji, S., & Pikle, M. (2005). Mangrove mapping and change detection around Mumbai (Bombay) using remotely sensed data. Indian Journal of Marine Sciences, 34(3), 310–315.

  • VishnuRadhan, R., Eldho, T. I., Vethamony, P., Saheed, P. P., & Shirodkar, P. V. (2018). Assessment of the environmental health of an ecologically sensitive, semi-enclosed, basin — A water quality modelling approach. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2018.10.035

    Article  Google Scholar 

  • Whitford, P. B. (1949). Distribution of woodland plants in relation to succession and clonal growth. Ecology, 30(2). https://doi.org/10.2307/1931186

  • World Resources Institute. (1996). World resources 1996-97. Oxford University Press.

  • Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, E., Selkoe, K. A., Stachowicz, J. J., & Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314(5800), 787–790. https://doi.org/10.1126/science.1132294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of ISRO (Indian Space Research Organization) funded project under NISAR (NASA ISRO Synthetic Aperture Radar) L&S band Airborne SAR Research Announcement to Dr. Rina Kumari (project ID: ECO-07). Dr. Rina Kumari expresses a sincere thanks to the Space Applications Centre (SAC), ISRO for providing fund and various research facilities for this study. Corresponding author also expresses sincere thanks to the Central University of Gujarat, Gandhinagar for providing research facilities. Mr. Jigarkumar B. Solanki expresses his gratitude for Junior Research Fellowship provided to him through in this project. The authors are thankful to the Google Earth Engine developers. The authors are thankful to the Forest Department, Govt. of Gujarat, India, for granting permission to conduct the work in the mangrove forest. The authors acknowledge all the members who supported during fieldwork.

Funding

This work is a part of ISRO (Indian Space Research Organization) funded project under NISAR (NASA ISRO Synthetic Aperture Radar) L&S band Airborne SAR Research Announcement to Dr. Rina Kumari (project ID: ECO-07). Mr. Jigarkumar B. Solanki expresses his gratitude for Junior Research Fellowship provided to him through in this project.

Author information

Authors and Affiliations

Authors

Contributions

JBS: data interpretation and analysis, fieldwork, manuscript drafting. NL: participated in fieldwork, manuscript editing. AKD: manuscript editing, resources. PM: participated in fieldwork. RK: conceptualization, supervision, manuscript editing.

Corresponding author

Correspondence to Rina Kumari.

Ethics declarations

Ethics approval

Yes, fieldwork was done after approval from Forest Department.

Consent to participate

Yes, all the authors mentioned in the manuscript have agreed for authorship.

Consent for publication

Yes.

Conflict of interest

Nikhil Lele, Anup Kumar Das, and Parul Maurya declare they have no financial interest. Dr. Rina Kumari has received research funding from the Space Application Centre, ISRO, Ahmedabad. Jigarkumar B. Solanki received fellowship and travel support from the project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, J.B., Lele, N., Das, A.K. et al. Assessment of mangrove cover dynamics and its health status in the Gulf of Khambhat, Western India, using high-resolution multi-temporal satellite data and Google Earth Engine. Environ Monit Assess 194, 896 (2022). https://doi.org/10.1007/s10661-022-10575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10575-x

Keywords

Navigation