Skip to main content

Advertisement

Log in

Impact of urban land use and land cover change on urban heat island and urban thermal comfort level: a case study of Addis Ababa City, Ethiopia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The increase in the urban heat island is caused by the replacement of vegetation cover by impervious surfaces. As the population of Addis Ababa City has increased dramatically, the vegetation cover and other land cover classes have been converted into built-up areas. This study attempted to examine the relationship between urban heat islands and urban thermal comfort (UTCL) and land use and land cover (LULC) change using geospatial technologies in Addis Ababa City, Ethiopia. Landsat TM 1991, Landsat ETM + 2005, and Landsat OLI/TIRS 2021 data were used in this study. During the study period, LULC change, land surface temperature (LST), and urban heat island were calculated using the multispectral and thermal infrared bands (1991–2021). Results revealed that the built-up area in 1991 was 96.6 km2 (18.3%), and increased to 165.4 km2 (31.4%) and 277.2 km2 (52.6%) by 2005 and 2021, respectively. In contrast, agriculture and vegetation land cover classes were declined by 66.8 km2 and 25.7 km2, respectively between 1991 and 2021. Rapid conversion of LULC change increases the mean LST of Addis Ababa City by 8.3 °C over the last three decades. According to the results, a high LST was recorded over built-up regions and areas with little vegetative cover. Furthermore, the central areas of the study area suffered a greater UHI effect than the surrounding areas. The results of the urban thermal field variance index (UTFVI) revealed that the UHI varies greatly across the city. Strong, stronger, and strongest urban heat islands dominated the central, southwestern, and southeastern suburbans of the study area, respectively. The excellent comfort level has declined from 16.3 km2 (3.1%) in 1991 to 12.1 km2 (2.3%) in 2021. The study proposed that local community awareness needs to be raised for environmental conservation through the establishment of urban green spaces that reduce UHI and increase comfort in Addis Ababa City.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Available in the manuscript.

Code availability

NA.

References

  • Abebe, M. S., Deribew, K. T., & Gemeda, D. O. (2019). Exploiting temporal-spatial patterns of informal settlements using GIS and remote sensing technique: A case study of Jimma city, Southwestern Ethiopia. Environment System Research, 8, 6. https://doi.org/10.1186/s40068-019-0133-5

    Article  Google Scholar 

  • Alene, E. T. (2022). Determinant factors for the expansion of informal settlement in Gondar city, Northwest Ethiopia. Journal of Urban Management. https://doi.org/10.1016/j.jum.2022.04.005. (In Press).

  • Ali, M. (2021). Urbanization and energy consumption in Sub-Saharan Africa. The Electricity Journal, 34(10), 107045. https://doi.org/10.1016/j.tej.2021.107045

    Article  Google Scholar 

  • Aram, F., Solgi, E., Garcia, E. H., & Mosavi, A. (2020). Urban heat resilience at the time of global warming: Evaluating the impact of the urban parks on outdoor thermal comfort. Environmental Sciences Europe, 32(1), 1–15.

    Article  Google Scholar 

  • Arghavani, S., Malakooti, H., & Bidokhti, A.-A.A.A. (2020). Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. Journal of Cleaner Production, 261, 121183.

    Article  Google Scholar 

  • Carlson, T. N., & Riziley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Article  Google Scholar 

  • Chao, Z., Wang, L., Che, M., & Hou, S. (2020). Effects of different urbanization levels on land surface temperature change: Taking Tokyo and Shanghai for example. Remote Sensing, 12(12), 2022.

    Article  Google Scholar 

  • Chibuike, E. M., Ibukun, A. O., Kunda, J. J., & Abbas, A. (2018). Assessment of green parks cooling effects on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment, 11, 11–21.

    Article  Google Scholar 

  • Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. (2017). Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718–726.

    Article  Google Scholar 

  • Central Statistical Authority. (1984a). The 1984a Population & Housing Census of Ethiopia Analytical Report at National Level. https://international.ipums.org/international/resources/enum_materials_pdf/source_doc_et1984a.pdf . Accessed on July 27, 2022.

  • Central Statistical Authority. (2007). Summary and statistical report of the 2007 population and housing census. Federal Democratic Republic of Ethiopia Population Census Commission. https://www.ethiopianreview.com/pdf/001/Cen2007_firstdraft(1).pdf . Accessed on 27 July 2022.

  • de la Croix, D., & Gobbi, P. E. (2022). Population homeostasis in sub-Saharan Africa. Economics & Human Biology, 45, 101102. https://doi.org/10.1016/j.ehb.2021.101102

    Article  Google Scholar 

  • Elmore, A. J., Mustard, J. F., Manning, S. J., & Lobell, D. B. (2000). Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sensing of Environment, 73(1), 87–102.

    Article  Google Scholar 

  • Estoque, R. C., & Murayama, Y. (2015). Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecological Indicators, 56, 205–217.

    Article  Google Scholar 

  • Fabbri, K., Ugolini, A., Iacovella, A., & Bianchi, A. P. (2020). The effect of vegetation in outdoor thermal comfort in archaeological area in urban context. Building and Environment, 175, 106816. https://doi.org/10.1016/j.buildenv.2020.106816

    Article  Google Scholar 

  • Feyissa, G., Zeleke, G., Bewket, W., & Gebremariam, E. (2018). Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate, 6, 58. https://doi.org/10.3390/cli6030058

    Article  Google Scholar 

  • Isioye, O. A., Ikwueze, H. U., & Akomolafe, E. A. (2020). Urban heat island effects and thermal comfort in Abuja Municipal Area Council of Nigeria. FUTY Journal of the Environment, 14(2), 19–34.

    Google Scholar 

  • Jang, G., & Kim, S. (2021). Are decline-oriented strategies thermally sustainable in shrinking cities? Urban Climate, 39, 100924. https://doi.org/10.1016/j.uclim.2021.100924

    Article  Google Scholar 

  • Jemberie, M. A., & Melesse, A. M. (2021). Urban flood management through urban land use optimization using LID techniques, City of Addis Ababa, Ethiopia. Water, 13, 1721. https://doi.org/10.3390/w13131721

    Article  Google Scholar 

  • Kabite, G., Suryabhagavan, K. V., Argaw, M., & Sulaiman, H. (2012). GIS-based solid waste landfill site selection in Addis Ababa, Ethiopia. International Journal of Ecology and Environmental Sciences, 38(2–3), 59–72.

    Google Scholar 

  • Kafy, A. A., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., Khan, M. H. H., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542.

    Article  Google Scholar 

  • Koroso, N. H., Lengoiboni, M., & Zevenbergen, J. A. (2021). Urbanization and urban land use efficiency: Evidence from regional and Addis Ababa satellite cities, Ethiopia. Habitat International, 117, 102437. https://doi.org/10.1016/j.habitatint.2021.102437

    Article  Google Scholar 

  • Kumari, B., Tayyab, M., Mallick, J., Khan, M. F., & Rahman, A. (2018). Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing in Earth Systems Sciences, 1(3), 63–78.

    Article  Google Scholar 

  • Lillesand, M. T., & Kiefer, W. R. (2004). Remote sensing and image interpretation (5th ed.). John Wiley and Sons.

    Google Scholar 

  • Liao, J., Tan, X., & Li, J. (2021). Evaluating the vertical cooling performances of urban vegetation scenarios in a residential environment. Journal of Building Engineering, 39, 102313. https://doi.org/10.1016/j.jobe.2021.102313

    Article  Google Scholar 

  • Liu, X., Zhou, Y., Yue, W., Li, X., Liu, Y., & Lu, D. (2020). Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. Journal of Cleaner Production, 257, 120529.

    Article  Google Scholar 

  • Mensah, C., Atayi, J., Kabo-Bah, A. T., Švik, M., Acheampong, D., Kyere-Boateng, R., & Marek, M. V. (2020). Impact of urban land cover change on the garden city status and land surface temperature of Kumasi. Cogent Environmental Science, 6(1), 1787738.

    Article  Google Scholar 

  • Moisa, M. B., & Gemeda, D. O. (2021). Analysis of urban expansion and land use/land cover changes using geospatial techniques: A case of Addis Ababa City, Ethiopia. Applied Geomatics, 13(4), 853–861.

    Article  Google Scholar 

  • Moisa, M. B., & Gemeda, D. O. (2022). Assessment of urban thermal field variance index and thermal comfort level of Addis Ababa metropolitan city. Ethiopia. Heliyon, 8(8), e10185. https://doi.org/10.1016/j.heliyon.2022.e10185

    Article  Google Scholar 

  • Moisa, M. B., Dejene, I. N., Merga, B. B., & Gemeda, D. O. (2022). Impacts of land use/land cover dynamics on land surface temperature using geospatial techniques in Anger River Sub-basin, Western Ethiopia. Environmental Earth Sciences, 81(3), 1–14.

    Article  Google Scholar 

  • Naikoo, M. W., Islam, A. R. M. T., Mallick, J., & Rahman, A. (2022). Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate, 41, 101052.

    Article  Google Scholar 

  • Neinavaz, E., Skidmore, A. K., & Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. International Journal of Applied Earth Observation and Geoinformation, 85, 101984.

    Article  Google Scholar 

  • Njoh, A. J. (2003). Urbanization and development in sub-Saharan Africa. Cities, 20(3), 167–174.

    Article  Google Scholar 

  • Qaid, A., Lamit, H. B., Ossen, D. R., & Shahminan, R. N. R. (2016). Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577–595.

    Article  Google Scholar 

  • Ren, G.-Y. (2015). Urbanization as a major driver of urban climate change. Advances in Climate Change Research, 6(1), 1–6.

    Article  Google Scholar 

  • Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: A case study of the Beas River Basin, India. Pertanika Journal of Science Technology, 26(2), 829–840.

    Google Scholar 

  • Satterthwaite, D. (2017). The impact of urban development on risk in sub-Saharan Africa’s cities with a focus on small and intermediate urban centres. International Journal of Disaster Risk Reduction, 26, 16–23.

    Article  Google Scholar 

  • Sekertekin, A., & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294.

    Article  Google Scholar 

  • Shi, T., Huang, Y., Wang, H., Shi, C.-E., & Yang, Y.-J. (2015). Influence of urbanization on the thermal environment of meteorological station: Satellite-observed evidence. Advances in Climate Change Research, 6(1), 7–15.

    Article  Google Scholar 

  • Shihan, C., Yuanjian, Y., Fei, D., Yanhao, Z., Duanyang, L., Chao, L., & Zhiqiu, G. (2022). A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations. Atmospheric Measurement Techniques, 15(3), 735–756.

    Article  Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V., Gupta, N., & Das, R. K. (2018). Automated mapping of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data. Arabian Journal of Geosciences, 11(6), 1–7.

    Article  Google Scholar 

  • Sodoudi, S., Zhang, H., Chi, X., Muller, F., & Li, H. (2018). The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry & Urban Greening, 34, 85–96.

    Article  Google Scholar 

  • Srivastava, P. K., Majumdar, T. J., & Bhattacharya, A. K. (2010). Study of land surface temperature and spectral emissivity using multi-sensor satellite data. Journal of Earth System Science, 119(1), 67–74.

    Article  Google Scholar 

  • Tafesse, B., & Suryabhagavan, K. V. (2019). Systematic modeling of impacts of land-use and land-cover changes on land surface temperature in Adama Zuria District, Ethiopia. Modeling Earth Systems and Environment, 5(3), 805–817.

    Article  Google Scholar 

  • Tagnan, J. N., Amponsah, O., Takyi, S. A., Azunre, G. A., & Braimah, I. (2022). A view of urban sprawl through the lens of family nuclearization. Habitat International, 123, 102555. https://doi.org/10.1016/j.habitatint.2022.102555

    Article  Google Scholar 

  • Talukdar, S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2021). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 1–29.

  • Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.

    Article  Google Scholar 

  • Teferi, E., & Abraha, H. (2017). Urban heat island effect of Addis Ababa City: Implications of urban green spaces for climate change adaptation. In Climate change adaptation in Africa (pp. 539–552). Springer, Cham.

  • Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. J. (2011). Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. International Journal of Health Geographics, 10(1), 1–14.

    Article  Google Scholar 

  • Ullah, M., Li, J., & Wadood, B. (2020). Analysis of urban expansion and its impacts on land surface temperature and vegetation using RS and GIS, A case study in Xi’an City, China. Earth Systems and Environment, 4(3), 583–597.

    Article  Google Scholar 

  • Vasenev, V., Varentsov, M., Konstantinov, P., Romzaykina, O., Kanareykina, I., Dvornikov, Y., & Manukyan, V. (2021). Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Science of the Total Environment, 786, 147457.

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, Y., Tsou, J. Y., & Li, Y. (2017). Surface urban heat island analysis of Shanghai (China) based on the change of land use and land cover. Sustainability, 9(9), 1538.

    Article  Google Scholar 

  • Warkaye, S., Suryabhagwan, K., & Satishkumar, B. S. E. (2018). Urban green areas to mitigate urban heat island effect: The case of Addis Ababa. Ethiopia International Journal of Ecology, 44, 353–367.

    Google Scholar 

  • Woldesemayat, E. M., & Genovese, P. V. (2021). Monitoring Urban Expansion and Urban Green Spaces Change in Addis Ababa: Directional and Zonal Analysis Integrated with Landscape Expansion Index. Forests, 12(4), 389.

    Article  Google Scholar 

  • Wolteji, B. N., Bedhadha, S. T., Gebre, S. L., Alemayehu, E., & Gemeda, D. O. (2022). Multiple indices based agricultural drought assessment in the Rift Valley Region of Ethiopia. Environmental Challenges, 7, 100488. https://doi.org/10.1016/j.envc.2022.100488

    Article  Google Scholar 

  • Worku, G., Teferi, E., & Bantider, A. (2021). Assessing the effects of vegetation change on urban land surface temperature using remote sensing data: The case of Addis Ababa City, Ethiopia. Remote Sensing Applications: Society and Environment, 22, 100520.

    Article  Google Scholar 

  • Yang, J., Sun, J., Ge, Q., & Li, X. (2017). Assessing the impacts of urbanization –Associated green space on urban land surface temperature: A case study of Dalian, China. Urban Forestry and Urban Greening, 22, 1–10.

    Article  Google Scholar 

  • Yang, Y.-J., Gao, Z., Shi, T., Wang, H., Li, Y., Zhang, N., Zhang, H., & Huang, Y. (2019). Assessment of urban surface thermal environment using MODIS with a population-weighted method: A case study. Journal of Spatial Science, 64(2), 287–300.

    Article  Google Scholar 

  • Yue, W., Xu, J., Tan, W., & Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7ETM + data. International Journal of Remote Sensing, 28(15), 3205–3226.

    Article  Google Scholar 

  • Zhang, B., Zhang, M., & Hong, D. (2021). Land surface temperature retrieval from Landsat 8 OLI/TIRS images based on back-propagation neural network. Indoor and Built Environment, 30(1), 22–38.

    Article  Google Scholar 

  • Zhang, J., Wang, Y., & Li, Y. (2006). A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers & Geosciences, 32(10), 1796–1805.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Wollega University Faculty of Technology, Jimma University College of Agriculture and Veterinary Medicine, and Mettu University for the existing facilities to conduct this study. We would like to thank Dr. Melkamu Dumessa Kenno from Jimma University for language edition and correction.

Author information

Authors and Affiliations

Authors

Contributions

Mitiku Badasa Moisa and Dessalegn Obsi Gemeda participated in research design, literature review, data analysis, and manuscript writing. Indale Niguse Dejene and Zenebe Reta Roba participated in research design, data collection, and satellite image, and document analysis. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Mitiku Badasa Moisa.

Ethics declarations

Consent for publication

The authors agreed to publish this manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moisa, M.B., Dejene, I.N., Roba, Z.R. et al. Impact of urban land use and land cover change on urban heat island and urban thermal comfort level: a case study of Addis Ababa City, Ethiopia. Environ Monit Assess 194, 736 (2022). https://doi.org/10.1007/s10661-022-10414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10414-z

Keywords

Navigation