Skip to main content

Advertisement

Log in

Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A series of complex organic fractions with different physical and chemical properties make up soil organic carbon (SOC), which plays a vital role in climate change and the global carbon cycle. Different SOC fractions have different stability and respond differently to vegetation succession. This research was carried out to assess the impacts of vegetation succession on SOC dynamics in the Qingmuguan karst valley area, southwest China. Soil samples were collected from four typical vegetation succession stages, including farmland, grassland, shrubland, and forest. The total SOC content and four oxidizable SOC fractions were measured. Results showed that the total SOC content and storage under farmland were highest, followed by forest and shrubland, and the grassland had the lowest total SOC content and storage. The SOC sequestration potential under different vegetation types in the study area was grassland (26.32 Mg C ha−1) > shrubland (9.64 Mg C ha−1). All SOC content, storage, and fractions showed a decrease with the increase of soil depth over the 0–50 cm in the study area. The four SOC fractions under forest at topsoil (0–10 cm) were higher than that under the other vegetation types. Compared with the other land uses, the farmland had the highest stable oxidizable SOC fractions (F3 and F4) at the 10–50-cm depth, while the shrubland had the highest active oxidizable SOC fractions (F1 and F2). In terms of the lability index of SOC, shrubland was the largest, followed by grassland and forest, and farmland was the smallest. These results provide essential information about SOC fractions and stability changes resulting from changes of vegetation types in a karst valley area of southwest China. It also supplements our understanding of soil carbon sequestration in vegetation succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The corresponding author will provide the data supporting the study’s findings upon reasonable request.

Code availability

The software application used for statistical data analysis was SPSS 19.0 and Microsoft Excel 2019.

References

  • Angst, G., Mueller, K. E., Eissenstat, D. M., Trumbore, S., Freeman, K. H., Hobbie, S. E., Chorover, J., Oleksyn, J., Reich, P. B., & Mueller, C. W. (2019). Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 25, 1529–1546.

    Article  Google Scholar 

  • Barreto, P. A. B., Gama-Rodrigues, E. F., Gama-Rodrigues, A. C., Fontes, A. G., Polidoro, J. C., Moco, M. K. S., Machado, R. C. R., & Baligar, V. C. (2011). Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia. Brazil, Agroforestry Systems, 81(3), 213–220.

  • Batista, S. G. M., Barreto-Garcia, P. A. B., Paula, A., Miguel, D. L., & Batista, W. C. A. (2018). Oxidizable fractions of soil organic carbon in Caatinga forest submitted to different forest managements. Ciencia Rural, 48(10), e20170708.

    Article  CAS  Google Scholar 

  • Bhattacharyya, R., Das, T. K., Sudhishri, S., Dudwal, B., Sharma, A. R., Bhatia, A., & Singh, G. (2015). Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice-wheat cropping system in the western Indo-Gangetic plains. European Journal of Agronomy, 70, 11–21.

    Article  Google Scholar 

  • Carolan, R., & Fornara, D. A. (2016). Soil carbon cycling and storage along a chronosequence of re-seeded grassland: Do soil carbon stocks increase with grassland age? Agriculture, Ecosystems and Environment, 218, 126–132.

    Article  CAS  Google Scholar 

  • Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Sciences, 166, 61–67.

    Article  CAS  Google Scholar 

  • Chang, R. Y., Fu, B. J., Liu, G. H., et al. (2011). Soil carbon sequestration potential for Grain for Green project in Loess Plateau, China. Environmental Management, 48, 1158–1172.

    Article  Google Scholar 

  • Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of northeastern Himalayan region of India. Land Degradation & Development, 27(4), 1163–1174.

    Article  Google Scholar 

  • Deng, L., & Shangguan, Z. P. (2017). Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 28(1), 151–165.

    Article  Google Scholar 

  • Deng, L., Liu, G. B., & Shangguan, Z. P. (2014). Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: A synthesis. Global Change Biology, 20, 3544–3556.

    Article  Google Scholar 

  • Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. NRC Research Press Ottawa, Canada, 75, 529–538.

    CAS  Google Scholar 

  • Gabarron-Galeote, M. A., Trigalet, S., & Wesemael, B. (2015). Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma, 249–250, 69–78.

    Article  CAS  Google Scholar 

  • Guo, C. Q. (2002). Study on the sustainable development of karst resources and environment in China. Territorial Economy, 9, 29–31.

    Google Scholar 

  • Herbrich, M., Gerke, H. H., Bens, O., & Sommer, M. (2017). Water balance and leaching of dissolved organic and inorganic carbon of eroded Luvisols using high precision weighing lysimeters. Soil & Tillage Research, 165, 144–160.

    Article  Google Scholar 

  • Huang, X. F., Zhou, Y. C., & Zhang, Z. M. (2017). Distribution characteristics of soil organic carbon under different land use patterns in karst rocky desertification area. Journal of Soil and Water Conservation, 31(5), 215–221.

    Google Scholar 

  • Kalembasa, S. J., & Jenkinson, D. S. (1973). A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. International Journal of Environmental Analytical Chemistry, 24, 1085–1090.

    CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.

    Article  CAS  Google Scholar 

  • Li, Q., & Zhou, D. W. (2018). Soil respiration versus vegetation degradation under the influence of three grazing regimes in the Songnen Plain. Land Degradation and Development, 29, 2403–2416.

    Article  Google Scholar 

  • Li, Z., & Delvaux, B. (2019). Phytolith-rich biochar: A potential Si fertilizer in desilicated soils. GCB Bioenergy, 11, 1264–1282.

    Article  CAS  Google Scholar 

  • Liu, S. J., Zhang, W., Wang, K. L., Pan, F. J., Yang, S., & Shu, S. Y. (2015). Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China. Science of the Total Environment, 521–522, 52–58.

    Article  CAS  Google Scholar 

  • Liu, X., Li, L., Qi, Z., Han, J., & Zhu, Y. (2017). Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China. Science of the Total Environment, 586, 1038–1045.

    Article  CAS  Google Scholar 

  • Liu, X., Li, L., Wang, Q., & Mu, S. (2018a). Land-use change affects stocks and stoichiometric ratios of soil carbon, nitrogen, and phosphorus in a typical agro-pastoral region of northwest China. Journal of Soils and Sediments, 18, 3167–3176.

    Article  CAS  Google Scholar 

  • Liu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018b). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. The Science of the Total Environment, 618, 1658–1664.

    Article  CAS  Google Scholar 

  • Liu, H. F., Zhang, J. Y., Ai, Z. M., Wu, Y., Xu, H. W., Li, Q., Xue, S., & Liu, G. B. (2018c). 16-year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem. Agriculture, Ecosystems and Environment, 265, 320–330.

    Article  Google Scholar 

  • Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to Unite Nations’ Sustainable Development Goals. Land Degradation and Development, 30, 824–838.

    Article  Google Scholar 

  • Luo, Y. X., Li, Y. X., Leng, Z. Y., Rao, J. B., Huang, D. Y., & Yu, P. J. (2021). Dynamics of soil organic carbon fractions in soil aggregates of Mollisols under different land-uses in Northeast China. Fresenius Environmental Bulletin, 30(04A), 4544–4552.

    CAS  Google Scholar 

  • Maia, S. M. F., Xavier, F. A. S., Oliveira, T. S., Mendonc, E. S., & Araújo Filho, J. A. (2007). Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems, 71(2), 127–138.

    Article  Google Scholar 

  • Mclauchlan, K. K., & Hobbie, S. E. (2004). Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 68, 1616–1625.

    Article  CAS  Google Scholar 

  • Pal, D., Patra, P. K., Deb, D., Bhattacharyya, R., Mukhopadhyay, D., Anderson, J. P. E., et al. (2020). Effect of land use on soil carbon fractions. Journal of the Indian Society of Soil Science, 68(4), 392–399.

    Article  Google Scholar 

  • Pan, G. X., & Cao, J. H. (1999). Surface zone karstification: A soil-mediated process in the Earth’s surface ecosystem: A case study of the karst system in the peak-cluster depression of Guilin. Carsologica Sinica. China Karst, 18(4), 287–296.

    Google Scholar 

  • Poeplau, C., & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189–201.

    Article  CAS  Google Scholar 

  • Pringle, M. J., Allen, D. E., Phelps, D. G., et al. (2014). The effect of pasture utilization rate on stocks of soil organic carbon and total nitrogen in a semi-arid tropical grassland. Agriculture, Ecosystems and Environment, 195, 83–90.

    Article  CAS  Google Scholar 

  • Qin, Z. L., Yang, X. M., Song, Z. L., et al. (2021). Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage. CATENA. (prepublish). https://doi.org/10.1016/J.CATENA.2020.105056

  • Rabbi, S. M. F., Wilson, B. R., Lockwood, P. V., Daniel, H., & Young, I. M. (2014). Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma, 216, 10–18.

    Article  CAS  Google Scholar 

  • Santos, C. A., Rezende, C. P., Machado, P. E. F., Pereira, J. M., Alves, B. J. R., Urquoaga, S., & Boddey, R. M. (2019). Changes in soil carbon stocks after land-use change form native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma, 337, 394–401.

    Article  CAS  Google Scholar 

  • Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91.

    Article  CAS  Google Scholar 

  • Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520, 171.

    Article  CAS  Google Scholar 

  • Soucemarianadin, L. N., Cecillon, L., Guenet, B., Chenu, C., Baudin, F., Nicolas, M., Girardin, C., & Barre, P. (2018). Environmental factors controlling soil organic carbon stability in French forest soils. Plant and Soils, 426, 267–286.

    Article  CAS  Google Scholar 

  • Sprunger, C. D., & Robertson, G. P. (2018). Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma, 318, 42–51.

    Article  CAS  Google Scholar 

  • Tian, K., Zhao, Y., Xu, X., Hai, N., Huang, B., & Deng, W. (2015). Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture, Ecosystems and Environment, 204, 40–50.

    Article  CAS  Google Scholar 

  • Vos, C., Don, A., Hobley, E. U., Prietz, R., Heidkamp, A., & Freibauer, A. (2019). Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. European Journal of Soil Science, 70, 550–564.

    Article  CAS  Google Scholar 

  • Wang, H., Guan, D., Zhang, R., Chen, Y., Hu, Y., & Xiao, L. (2014a). Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetation field. Ecological Engineering, 70, 206–211.

    Article  Google Scholar 

  • Wang, Q. Y., Wang, Y., Wang, Q. C., & Liu, J. S. (2014b). Impacts of 9 years of a new conservational agricultural management on soil organic carbon fractions. Soil and Tillage Research, 143, 1–6.

    Article  Google Scholar 

  • Wiesmeier, M., Schad, P., Lutzow, M., et al. (2014). Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agriculture, Ecosystems and Environment, 185, 208–220.

    Article  CAS  Google Scholar 

  • Yu, P. J., Liu, S. W., Han, K. X., Guan, S. C., & Zhou, D. W. (2017). Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agriculture, Ecosystems and Environment, 245, 83–91.

    Article  CAS  Google Scholar 

  • Yu, P. J., Li, Y. X., Liu, S. W., Ding, Z., Zhang, A. C., & Tang, X. G. (2022). The quantity and stability of soil organic carbon following vegetation degradation in a salt-affected region of northeastern China. CATENA, 221, 105984.

    Article  CAS  Google Scholar 

  • Yuan, Z. X., Jin, X. M., Guan, Q. W., & Meshack, A. O. (2021). Converting cropland to plantation decreases soil organic carbon stock and liable fractions in the fertile alluvial plain of eastern China. Geoderma Regional. (prepublish). https://doi.org/10.1016/J.GEODRS.2021.E00356

  • Zhang, F. F., Yue, S. C., & Li, S. Q. (2021). Research progress in chemical determination of soil organic carbon components and carbon index. Journal of Agro-Environment Science, 40(2), 252–259.

    Google Scholar 

  • Zhang, K., Dang, H., Tan, S., Chen, X., & Zhang, Q. (2010). Change in soil organic carbon following the ‘Grain-for-Green’ programme in China. Land Degradation & Development, 21(1), 13–23.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Special Project on National Science and Technology Basic Resources Investigation of China (2021FY100701); the National Natural Science Foundation of China (42171175); and the Fundamental Research Funds for the Central Universities in China (SWU-KT22009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pujia Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, Y., Liu, S. et al. Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China. Environ Monit Assess 194, 562 (2022). https://doi.org/10.1007/s10661-022-10254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10254-x

Keywords

Navigation