Skip to main content

Advertisement

Log in

Event-based landslide susceptibility models in Shihmen watershed, Taiwan: accounting for the characteristics of rainfall events

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

When performing a landslide susceptibility analysis, a model is usually established on the basis of a multi-temporal or event-triggered landslide inventory. Because multi-temporal landslide inventories for most areas are rarely available, an event-triggered landslide inventory is often used, but the result depends on the selection of single event. In order to establish a landslide susceptibility model with a good prediction performance, the present study tried to find out how to select a single event-triggered landslide inventory, and investigated the effect of various combinations of event inventories. We selected Shihmen reservoir watershed as the research area, conducted a logistic regression analysis to build 23 event-based landslide susceptibility models and one multi-year landslide susceptibility model, and estimated the performance of these models. In addition, this study further assessed the influence of event characteristics on the model prediction performance, used the above results to merge two different events, and then established models based on these combinations. The results indicated that when establishing an event-based landslide susceptibility model, selecting events with suitable rainfall return periods and landslide density can yield robust models with relatively high predictive ability. Furthermore, the combination of two events which negatively correlate with each other in rainfall spatial distributions can enhance a model’s predictive ability and modeling efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Not applicable.

Abbreviations

ACC:

Accuracy

AUROC:

Area under the receiver operating characteristic curve

AUSRC:

Area under the success rate curve

DEM:

Digital elevation model

FPR:

False positive rate

LISA:

Local indicators of spatial association

ROC:

Receiver operating characteristic

SRC:

Success rate curve

TPR:

True positive rate

References

  • Anselin, L. (1995). Local indicators of spatial association – LISA. Geographical Analysis, 27, 93–115.

    Article  Google Scholar 

  • Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J. (2019). Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Science and Reports, 9, 12296. https://doi.org/10.1038/s41598-019-48773-2

    Article  CAS  Google Scholar 

  • Chung, C. J., & Fabbri, A. G. (2008). Predicting landslides for risk analysis—spatial models tested by a cross-validation technique. Geomorphology, 94, 438–452. https://doi.org/10.1016/j.geomorph.2006.12.036

    Article  Google Scholar 

  • Dai, F., & Lee, C. (2003). A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms: THe Journal of the British Geomorphological Research Group, 28, 527–545. https://doi.org/10.1002/esp.456

    Article  Google Scholar 

  • Hua, Y., Wang, X., Li, Y., Xu, P., & Xia, W. (2021). Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides, 18, 281–302. https://doi.org/10.1007/s10346-020-01444-0

    Article  Google Scholar 

  • Kim, H. G., Lee, D. K., Park, C., Kil, S., Son, Y., & Park, J. H. (2015). Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environmental Earth Sciences, 73, 1385–1400. https://doi.org/10.1007/s12665-014-3775-7

    Article  CAS  Google Scholar 

  • Kirschbaum, D., & Stanley, T. (2018). Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future, 6, 505–523. https://doi.org/10.1002/2017EF000715

    Article  Google Scholar 

  • Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., & Brenning, A. (2020). Event-based landslide modeling in the Styrian basin, Austria: Accounting for time-varying rainfall and land cover. Geosciences, 10, 217. https://doi.org/10.3390/geosciences10060217

    Article  Google Scholar 

  • Lai, J. S., Chiang, S. H., & Tsai, F. (2019). Exploring influence of sampling strategies on event-based landslide susceptibility modeling. ISPRS International Journal of Geo-Information, 8, 397. https://doi.org/10.3390/ijgi8090397

    Article  Google Scholar 

  • Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., & Dong, J. J. (2008). Statistical approach to storm event-induced landslides susceptibility. Natural Hazards and Earth System Sciences, 8, 941–960. https://doi.org/10.5194/nhess-8-941-2008

    Article  Google Scholar 

  • Lei, X., Chen, W., & Pham, B. T. (2020). Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis. ISPRS International Journal of Geo-Information, 9, 443. https://doi.org/10.3390/ijgi9070443

    Article  Google Scholar 

  • Lin, B. S., Thomas, K., Chen, C. K., & Ho, H. C. (2019). Evaluation of landslides process and potential in Shenmu sub-watersheds, central Taiwan. Landslides, 16, 551–570. https://doi.org/10.1007/s10346-018-1109-7

    Article  Google Scholar 

  • Lombardo, L., Bakka, H., Tanyas, H., van Westen, C., Mai, P. M., & Huser, R. (2019). Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. Journal of Geophysical Research Earth Surface, 124(7), 1958–1980.

    Article  Google Scholar 

  • Lucà, F., D’Ambrosio, D., Robustelli, G., Rongo, R., & Spataro, W. (2014). Integrating geomorphology, statistic and numerical simulations for landslide invasion hazard scenarios mapping: An example in the Sorrento Peninsula (Italy). Computers & Geosciences, 67, 163–172. https://doi.org/10.1016/j.cageo.2014.01.006

    Article  Google Scholar 

  • Lucchese, L. V., de Oliveira, G., & Pedrollo, O. C. (2020). Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment. Environmental Monitoring and Assessment, 192, 129. https://doi.org/10.1007/s10661-019-7968-0

    Article  Google Scholar 

  • Ozioko, O. H., & Igwe, O. (2020). GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Environmental Monitoring and Assessment, 192, 119. https://doi.org/10.1007/s10661-019-7951-9

    Article  CAS  Google Scholar 

  • Ozturk, U., Pittore, M., Behling, R., Roessner, S., Andreani, L., & Korup, O. (2021). How robust are landslide susceptibility estimates? Landslides, 18, 681–695. https://doi.org/10.1007/s10346-020-01485-5

    Article  Google Scholar 

  • Petschko, H., Brenning, A., Bell, R., Goetz, J., & Glade, T. (2014). Assessing the quality of landslide susceptibility maps–case study Lower Austria. Natural Hazards and Earth System Sciences, 14, 95–118. https://doi.org/10.5194/nhess-14-95-2014

    Article  Google Scholar 

  • Pineda, M. C., Viloria, J., & Martínez-Casasnovas, J. A. (2016). Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region. Environmental Monitoring and Assessment, 188, 255. https://doi.org/10.1007/s10661-016-5240-4

    Article  CAS  Google Scholar 

  • Promper, C., Gassner, C., & Glade, T. (2015). Spatiotemporal patterns of landslide exposure–a step within future landslide risk analysis on a regional scale applied in Waidhofen/Ybbs Austria. International Journal of Disaster Risk Reduction, 12, 25–33. https://doi.org/10.1016/j.ijdrr.2014.11.003

    Article  Google Scholar 

  • Rodrigues, S. G., Silva, M. M., & Alencar, M. H. (2021). A proposal for an approach to mapping susceptibility to landslides using natural language processing and machine learning. Landslides. https://doi.org/10.1007/s10346-021-01643-3

    Article  Google Scholar 

  • Shou, K. J., & Yang, C. M. (2015). Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. Engineering Geology, 192, 46–62. https://doi.org/10.1016/j.enggeo.2015.03.012

    Article  Google Scholar 

  • Tanyas, H., Rossi, M., Alvioli, M., van Westen, C. J., & Marchesini, I. (2019). A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology, 327, 126–146. https://doi.org/10.1016/j.geomorph.2018.10.022

    Article  Google Scholar 

  • Tien Bui, D., Anh Tuan, T., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.

    Article  Google Scholar 

  • Wu, C. Y., & Chen, S. C. (2013). Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed. Taiwan. Natural Hazards and Earth System Sciences, 13, 2353–2367.

    Article  Google Scholar 

  • Xiao, T., Segoni, S., Chen, L., Yin, K., & Casagli, N. (2020). A step beyond landslide susceptibility maps: A simple method to investigate and explain the different outcomes obtained by different approaches. Landslides, 17, 627–640. https://doi.org/10.1007/s10346-019-01299-0

    Article  Google Scholar 

  • Xie, M., Esaki, T., & Zhou, G. (2004). GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33, 265–282. https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d

    Article  Google Scholar 

  • Chen, S. C., & Wu, C. Y. (2016). Annual landslide risk and effectiveness of risk reduction measures in Shihmen watershed, Taiwan. Landslides, 13, 551–563. https://doi.org/10.1007/s10346-015-0588-z

  • Chien, F. C. (2015). The relationship among probability of failure, landslide susceptibility and rainfall. Master thesis, National Central University.

  • Fu, C. C. (2017). Event-based landslide susceptibility and rainfall-induced landslide probability prediction model in the Zengwen reservoir catchment. Master thesis, National Central University.

  • Gassner, C., Promper, C., Beguería, S., & Glade, T. (2015). Climate change impact for spatial landslide susceptibility. In Engineering Geology for Society and Territory-Volume 1 (pp. 429–433). Springer. https://doi.org/10.1007/978-3-319-09300-0_82

  • Kim, H. G., Lee, D. K., Park, C., Ahn, Y., Kil, S. H., Sung, S., & Biging, G. S. (2018). Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stochastic Environmental Research and Risk Assessment, 32, 2987–3019. https://doi.org/10.1007/s00477-018-1609-y

  • Lee, C. T. (2017). Landslide trends under extreme climate events. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 28, 33–42. https://doi.org/10.3319/TAO.2016.05.28.01(CCA)

  • Lee, C. T., & Chung, C. C. (2017). Common patterns among different landslide susceptibility models of the same region. In Workshop on World Landslide Forum (pp. 937–942). Springer. https://doi.org/10.1007/978-3-319-53498-5_106

  • Luo, L., Lombardo, L., van Westen, C., Pei, X., & Huang, R. (2021). From scenario-based seismic hazard to scenario-based landslide hazard: Rewinding to the past via statistical simulations. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-020-01959-x

  • Mokhtari, M., & Abedian, S. (2019). Spatial prediction of landslide susceptibility in Taleghan basin, Iran. Stochastic Environmental Research and Risk Assessment, 33, 1297–1325. https://doi.org/10.1007/s00477-019-01696-w

  • Tien Bui, D., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426. https://doi.org/10.1016/j.catena.2019.104426

Download references

Acknowledgements

The authors would like to thank the Water Resources Agency, MOEA, Taiwan for providing rainfall data, and C.L. Hsueh for her work on the event-based landslide inventories. We sincerely thank anonymous reviewers for helpful comments on earlier drafts of the manuscript.

Funding

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant No. MOST 108–2625-M-005–003.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CYW; Methodology: CYW and SYL; Formal analysis and investigation: CYW and SYL; Writing—original draft preparation: CYW and SYL; Writing—review and editing: CYW; Funding acquisition: CYW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Yi Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Overview of the satellite image data used over the period of 1996 to 2015

Typhoon event

Pre-event satellite image

Post-event satellite image

Date

Resolution

Band

Source

Date

Resolution

Band

Source

1-Herb

1996/01/01

10.0 m

Pan

SPOT 2

1996/11/08

10.0 m

Pan

SPOT 2

2-Xangsane

2000/10/11

10.0 m

Pan

SPOT 1

2001/03/15

10.0 m

Pan

SPOT 2

3-Toraji

2001/03/15

10.0 m

Pan

SPOT 2

2001/08/22

10.0 m

Pan

SPOT 2

4-Nari

2001/08/22

10.0 m

Pan

SPOT 2

2001/10/13

10.0 m

Pan

SPOT 2

5-Aere

2004/02/10

2.5 m

Pan

SPOT 5

2004/11/02

2.5 m

Pan

SPOT 5

6-Haitang

2005/03/16

2.5 m

Pan

SPOT 5

2005/07/25

2.0 m

Pan

FORMOSAT 2

7-Matsa

2005/07/25

2.0 m

Pan

FORMOSAT 2

2005/08/16

2.0 m

Pan

FORMOSAT 2

8-Talim

2005/08/16

2.0 m

Pan

FORMOSAT 2

2005/09/09

2.0 m

Pan

FORMOSAT 2

9-Longwang

2005/09/09

2.0 m

Pan

FORMOSAT 2

2005/11/11

2.5 m

Pan

SPOT 5

10-Shanshan

2005/11/11

2.5 m

Pan

SPOT 5

2006/10/20

2.5 m

Pan

SPOT 5

11-Krosa

2007/08/28

2.5 m

Pan

SPOT 5

2007/12/21

2.5 m

Pan

SPOT 5

12-Jangmi

2008/08/24

2.0 m

Pan

FORMOSAT 2

2008/11/02

2.5 m

Pan

SPOT 5

13-Morakot

2009/05/08

2.5 m

Pan

SPOT 5

2009/08/20

2.5 m

Pan

SPOT 5

14-Parma

2009/08/20

2.5 m

Pan

SPOT 5

2009/10/21

2.5 m

Pan

SPOT 5

15-Fanapi

2010/04/01

2.5 m

Pan

SPOT 5

2010/09/22

2.0 m

Pan

FORMOSAT 2

16-Megi

2010/09/22

2.0 m

Pan

FORMOSAT 2

2010/11/01

2.0 m

Pan

FORMOSAT 2

17-Meari

2011/04/20

2.0 m

Pan

FORMOSAT 2

2011/07/28

2.0 m

Pan

FORMOSAT 2

18-Nanmadol

2011/07/28

2.0 m

Pan

FORMOSAT 2

2011/09/17

2.0 m

Pan

FORMOSAT 2

19-Talim(2)

2011/09/17

2.0 m

Pan

FORMOSAT 2

2012/07/02

2.0 m

Pan

FORMOSAT 2

20-Saola

2012/07/02

2.0 m

Pan

FORMOSAT 2

2012/08/15

2.0 m

Pan

FORMOSAT 2

21-Soulik

2012/08/15

2.0 m

Pan

FORMOSAT 2

2013/08/04

2.0 m

Pan

FORMOSAT 2

22-Matmo

2013/08/04

2.0 m

Pan

FORMOSAT 2

2014/08/25

2.0 m

Pan

FORMOSAT 2

23-Soudelor

2015/04/15

2.0 m

Pan

FORMOSAT 2

2015/09/18

2.0 m

Pan

FORMOSAT 2

Appendix 2

figure 11

Maps of intrinsic susceptibility variables

Appendix 3

figure 12

Landslide susceptibility maps of the 23 event-based susceptibility models

Appendix 4

figure 13

Landslide susceptibility map of the multi-year susceptibility model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CY., Lin, SY. Event-based landslide susceptibility models in Shihmen watershed, Taiwan: accounting for the characteristics of rainfall events. Environ Monit Assess 194, 405 (2022). https://doi.org/10.1007/s10661-022-10075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10075-y

Keywords

Navigation