Skip to main content

Advertisement

Log in

Effects of forest cover pattern on water quality of low-order streams in an agricultural landscape in the Pirapora river basin, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Low-order streams are important places for river formation and are highly vulnerable to changes in terrestrial ecosystems. Thus, the land-use/land-cover plays an important role in the maintenance of water quality. However, only land-use/land-cover composition may not explain the spatial variation in water quality, because it does not consider land-use/land-cover configuration and forest cover pattern. In this context, the study aimed to evaluate the forest cover pattern effects on water quality on low-order streams located in an agricultural landscape. Applying a paired watershed method, we selected two watersheds classified according to their morphometry and average slope to discard other physical factors that could influence the water quality. Land-use/land-cover pattern was analyzed for composition and forest cover configuration using landscape metrics, including the riparian zone composition. Water quality variables were obtained every two weeks during the hydrological year. This way, watersheds had similar morphometry, slope, and land-use/land-cover composition but differed in forest cover pattern. Watershed with more aggregated forest cover had a better water quality than the other one. The results show that forest cover contributes to water quality maintenance, while forest fragmentation influences the water quality negatively, especially in sediment retention. Agricultural practices are sources of sediment and nutrients to the river, especially in steep relief. Thus, in addition to land-use/land-cover composition, forest cover pattern must be considered in management of low-order streams in tropical agricultural watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  • Amuchástegui, G., di Franco, L., & Feijoó, C. (2016). Catchment morphometric characteristics, land use and water chemistry in Pampean streams: A regional approach. Hydrobiologia, 767(1), 65–79. https://doi.org/10.1007/s10750-015-2478-8

    Article  CAS  Google Scholar 

  • APHA (Ed.). (2005). Standard Methods for the Examination of Water & Wastewater, Centennial Edition (21st ed.). Washington: APHA (American Public Health Association).

  • Bailão, E. F. L. C., Santos, L. A. C., Almeida, S. D. S., D’Abadia, P. L., de Morais, R. J., de Matos, T. N., et al. (2020). Effect of land-use pattern on the physicochemical and genotoxic properties of water in a low-order stream in Central Brazil. Ambiente e Agua - an Interdisciplinary Journal of Applied Science, 15(3), 1. https://doi.org/10.4136/ambi-agua.2486

    Article  CAS  Google Scholar 

  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61. https://doi.org/10.1016/j.jhydrol.2004.12.010

    Article  Google Scholar 

  • Campos Pinto, L., de Mello, C. R., Norton, L. D., Owens, P. R., & Curi, N. (2016). Spatial prediction of soil–water transmissivity based on fuzzy logic in a Brazilian headwater watershed. CATENA, 143, 26–34. https://doi.org/10.1016/j.catena.2016.03.033

    Article  Google Scholar 

  • Cardoso, C. A., Dias, H. C. T., Soares, C. P. B., & Martins, S. V. (2006). Morphometric characterization of Debossan river watershed, Nova Firburgo. RJ. Revista Árvore, 30(2), 241–248. https://doi.org/10.1590/S0100-67622006000200011

    Article  Google Scholar 

  • Carey, G. (1998). Multivariate Analysis of Variance (MANOVA): I. Theory. Colorado.

  • Carneiro, C. D. R., Bistrichi, C. A., Ponçano, W. L., & Alameida, M. A. (1981). Mapa Geomorfológico do Estado de São Paulo (Geomorphological Map of the State of São Paulo). São Paulo: Instituto de Pesquisas Tecnológicas.

  • Castillo, M. M., Morales, H., Valencia, E., Morales, J. J., & Cruz-Motta, J. J. (2012). The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas. Knowledge and Management of Aquatic Ecosystems, 407, 09. https://doi.org/10.1051/kmae/2013035

    Article  Google Scholar 

  • CEPAGRI. (2020). Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI/UNICAMP. https://www.cpa.unicamp.br/. Accessed 5 January 2019.

  • CETESB. (2018). Total coliforms, thermotolerant coliforms and Escherichia coli – Procedure for multiple-tube technique (5th ed., p. 29). São Paulo: Companhia Ambiental do Estado de São Paulo - CETESB. http://cetesb.sp.gov.br/wp-content/uploads/2018/01/Para-enviar-ao-PCSM_-NTC-L5.202_5aed-_dez.-2018.pdf. Accessed 9 March 2021.

  • Clément, F., Ruiz, J., Rodríguez, M. A., Blais, D., & Campeau, S. (2017). Landscape diversity and forest edge density regulate stream water quality in agricultural catchments. Ecological Indicators, 72, 627–639. https://doi.org/10.1016/j.ecolind.2016.09.001

    Article  CAS  Google Scholar 

  • CONAMA (Conselho Nacional de Meio Ambiente). (2005). Resolução n° 357, de 17 de março de 2005. http://conama.mma.gov.br/. Accessed 9 January 2019.

  • da Silva, G. S., da Silva, G. S., de Sousa, E. R., Konrad, C., Bem, C. C., Pauli, J., & Pereira, A. (2009). Phosphorus and nitrogen in waters of the ocoí river sub-basin, Itaipu reservoir tributary. Journal of the Brazilian Chemical Society, 20(9), 1580–1588. https://doi.org/10.1590/S0103-50532009000900004

    Article  Google Scholar 

  • de Mello, K., Randhir, T. O., Valente, R. A., & Vettorazzi, C. A. (2017). Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering, 108, 514–524. https://doi.org/10.1016/j.ecoleng.2017.06.049

    Article  Google Scholar 

  • de Mello, K., Valente, R. A., Randhir, T. O., dos Santos, A. C. A., & Vettorazzi, C. A. (2018a). Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. CATENA, 167, 130–138. https://doi.org/10.1016/j.catena.2018.04.027

    Article  CAS  Google Scholar 

  • de Mello, K., Valente, R. A., Randhir, T. O., & Vettorazzi, C. A. (2018b). Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecological Indicators, 93, 1293–1301. https://doi.org/10.1016/j.ecolind.2018.06.030

    Article  CAS  Google Scholar 

  • de Mello, K., Taniwaki, R. H., de Paula, F. R., Valente, R. A., Randhir, T. O., Macedo, D. R., et al. (2020). Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. Journal of Environmental Management, 270, 110879. https://doi.org/10.1016/j.jenvman.2020.110879

    Article  CAS  Google Scholar 

  • Ding, J., Jiang, Y., Liu, Q., Hou, Z., Liao, J., Fu, L., & Peng, Q. (2016). Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. The Science of the Total Environment, 551–552, 205–216. https://doi.org/10.1016/j.scitotenv.2016.01.162

    Article  CAS  Google Scholar 

  • EMBRAPA. (1999). Classificação de Solos do Estado de São Paulo (Classification of Soils of the State of São Paulo). Rio de Janeiro: Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA).

  • Fernandes, M. M., Ceddia, M. B., Francelino, M. R., & Fernandes, M. R. de M. (2015). Environmental diagnosis of the riparian zone and quality of water in two micro watersheds used for human supply. IRRIGA.

  • Ferraz, S. F. B., Ferraz, K. M. P. M. B., Cassiano, C. C., Brancalion, P. H. S., da Luz, D. T. A., Azevedo, T. N., et al. (2014). How good are tropical forest patches for ecosystem services provisioning? Landscape Ecology, 29(2), 187–200. https://doi.org/10.1007/s10980-014-9988-z

    Article  Google Scholar 

  • Forman, R. T. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133–142. https://doi.org/10.1007/BF00133027

  • Freeman, M. C., Pringle, C. M., & Jackson, C. R. (2007). Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales1. JAWRA Journal of the American Water Resources Association, 43(1), 5–14. https://doi.org/10.1111/j.1752-1688.2007.00002.x

    Article  Google Scholar 

  • Goldstein, J. H., Caldarone, G., Duarte, T. K., Ennaanay, D., Hannahs, N., Mendoza, G., et al. (2012). Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7565–7570. https://doi.org/10.1073/pnas.1201040109

    Article  Google Scholar 

  • Gomes, T. F., Van de Broek, M., Govers, G., Silva, R. W. C., Moraes, J. M., Camargo, P. B., et al. (2019). Runoff, soil loss, and sources of particulate organic carbon delivered to streams by sugarcane and riparian areas: An isotopic approach. CATENA, 181, 104083. https://doi.org/10.1016/j.catena.2019.104083

    Article  CAS  Google Scholar 

  • Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding Processes and Downstream Linkages of Headwater Systems. BioScience, 52(10), 905. https://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2

    Article  Google Scholar 

  • Gonzales-Inca, C. A., Kalliola, R., Kirkkala, T., & Lepistö, A. (2015). Multiscale landscape pattern affecting on stream water quality in agricultural watershed. SW Finland. Water Resources Management, 29(5), 1669–1682. https://doi.org/10.1007/s11269-014-0903-9

    Article  Google Scholar 

  • Huang, Z., Han, L., Zeng, L., Xiao, W., & Tian, Y. (2016). Effects of land use patterns on stream water quality: A case study of a small-scale watershed in the Three Gorges Reservoir Area, China. Environmental Science and Pollution Research International, 23(4), 3943–3955. https://doi.org/10.1007/s11356-015-5874-8

    Article  CAS  Google Scholar 

  • Hutton, G. (2012). Global costs and benefits of drinking-water supply and sanitation interventions to reach the MDG target and universal coverage. Geneva, Switzerland: World Health Organization - WHO. https://www.who.int/water_sanitation_health/publications/global_costs/en/. Accessed 10 March 2021.

  • IBGE. (2013). Manual técnico de uso da terra: Divulga os procedimentos metodológicos utilizados nos estudos e pesquisas de geociências (3rd ed.). Instituto Brasileiro de Geografia e Estatística - IBGE.

    Google Scholar 

  • IBGE. (2020). Instituto Brasileiro de Geografia e Estatística (IBGE). Instituto Brasileiro de Geografia e Estatística (IBGE). https://www.ibge.gov.br/. Accessed 17 February 2021.

  • Korol, A. R., Ahn, C., & Noe, G. B. (2016). Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment. Ecological Engineering, 95, 252–265. https://doi.org/10.1016/j.ecoleng.2016.06.057

    Article  Google Scholar 

  • Kovach Computing Services. (2007). Multi-Variate Statistical Package - MVSP Plus . Computer software, Kovach Computing Services.

  • Mansor, M. T. C., Teixeira Filho, J., & Roston, D. M. (2006). Preliminary assessment of diffused loads from rural areas in a sub-basin of the Jaguari River, SP, Brazil. Revista Brasileira De Engenharia Agrícola e Ambiental, 10(3), 715–723. https://doi.org/10.1590/S1415-43662006000300026

    Article  Google Scholar 

  • McGarigal, K. (2015). FRAGSTATS help. Documentation for FRAGSTATS, 4.

  • Ou, Y., Wang, X., Wang, L., & Rousseau, A. N. (2016). Landscape influences on water quality in riparian buffer zone of drinking water source area. Northern China. Environmental Earth Sciences, 75(2), 114. https://doi.org/10.1007/s12665-015-4884-7

    Article  Google Scholar 

  • Organization, W. H. (Ed.). (2017). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. World Health Organization.

    Google Scholar 

  • Pinto, L. C., de Mello, C. R., & Ávila, L. F. (2013). Water quality indicators in the Mantiqueira Range region. Minas Gerais State. CERNE, 19(4), 687–692. https://doi.org/10.1590/S0104-77602013000400020

    Article  Google Scholar 

  • Pissarra, T. C. T., Rodrigues, F. M., Politano, W., & Galbiatti, J. A. (2010). Morfometria de microbacias do Córrego Rico, afluente do Rio Mogi-Guaçu, Estado de São Paulo. Brasil. Revista Árvore, 34(4), 669–676. https://doi.org/10.1590/S0100-67622010000400011

    Article  Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for Conservation. Biological Conservation, 142(6), 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rossi, M. (2017). Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal, 1.

  • R Core Team. (2014). R: A Language and Environment for Statistical Computing. Computer software, Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org. Accessed 2 January 2017

  • Santos, I. D., Fill, H., Sugai, M. R., Buba, H., Kishi, R., Marone, E., & Lautert, L. (2001). Applied Hydrometry. Curitiba: Lactec.

  • Schilling, K. E., & Jacobson, P. (2014). Effectiveness of natural riparian buffers to reduce subsurface nutrient losses to incised streams. CATENA, 114, 140–148. https://doi.org/10.1016/j.catena.2013.11.005

    Article  CAS  Google Scholar 

  • Shehab, Z. N., Jamil, N. R., Aris, A. Z., & Shafie, N. S. (2021). Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong. Malaysia. Ecological Indicators, 122, 107254. https://doi.org/10.1016/j.ecolind.2020.107254

    Article  Google Scholar 

  • Shi, P., Zhang, Y., Li, Z., Li, P., & Xu, G. (2017). Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. CATENA, 151, 182–190. https://doi.org/10.1016/j.catena.2016.12.017

    Article  CAS  Google Scholar 

  • Silva, V. A. M., Mello, K. de, Vettorazzi, C. A., Costa, D. R. da, & Valente, R. A. (2017). Priority areas for forest conservation, aiming at the maintenance of water resources, through the multicriteria evaluation1. Revista Árvore, 41(1). https://doi.org/10.1590/1806-90882017000100019

  • Song, Y., Song, X., Shao, G., & Hu, T. (2020). Effects of land use on stream water quality in the rapidly urbanized areas: A multiscale analysis. Water, 12(4), 1123. https://doi.org/10.3390/w12041123

    Article  CAS  Google Scholar 

  • Sosa Gonzalez, V., Bierman, P. R., Fernandes, N. F., & Rood, D. H. (2016). Long-term background denudation rates of southern and southeastern Brazilian watersheds estimated with cosmogenic 10 Be. Geomorphology, 268, 54–63. https://doi.org/10.1016/j.geomorph.2016.05.024

    Article  Google Scholar 

  • Tanaka, M. O., de Souza, A. L. T., Moschini, L. E., & de Oliveira, A. K. (2016). Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agriculture, Ecosystems & Environment, 216, 333–339. https://doi.org/10.1016/j.agee.2015.10.016

    Article  Google Scholar 

  • Taniwaki, R. H., Cassiano, C. C., Fransozi, A. A., Vásquez, K. V., Posada, R. G., Velásquez, G. V., & Ferraz, S. F. B. (2019). Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica (online), 74, 1–7. https://doi.org/10.1016/j.limno.2018.10.002

    Article  CAS  Google Scholar 

  • Taniwaki, R. H., Piggott, J. J., Ferraz, S. F. B., & Matthaei, C. D. (2017). Climate change and multiple stressors in small tropical streams. Hydrobiologia, 793(1), 41–53. https://doi.org/10.1007/s10750-016-2907-3

    Article  Google Scholar 

  • Turunen, J., Elbrecht, V., Steinke, D., & Aroviita, J. (2021). Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams. Freshwater Biology, 66(4), 785–798. https://doi.org/10.1111/fwb.13678

    Article  CAS  Google Scholar 

  • Uriarte, M., Yackulic, C. B., Lim, Y., & Arce-Nazario, J. A. (2011). Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landscape Ecology, 26(8), 1151–1164. https://doi.org/10.1007/s10980-011-9642-y

    Article  Google Scholar 

  • Uuemaa, E., Roosaare, J., & Mander, Ü. (2005). Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecological Indicators, 5(4), 350–369. https://doi.org/10.1016/j.ecolind.2005.03.009

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. https://doi.org/10.1139/f80-017

    Article  Google Scholar 

  • Vijith, H., Hurmain, A., & Dodge-Wan, D. (2018). Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo. Remote Sensing Applications: Society and Environment, 12, 57–69. https://doi.org/10.1016/j.rsase.2018.09.003

    Article  Google Scholar 

  • Villela, S. M., & Mattos, A. (Eds.). (1975). Hidrologia Aplicada São Paulo. São Paulo: McGraw-Hill do Brasil.

  • Welch, E. B., & Lindell, T. (2004). Ecological Effects of Waste Water: Applied limnology and pollutant effects (3rd ed., p. 436). Taylor & Francis e-Library.

    Google Scholar 

  • Wu, J., Jin, Y., Hao, Y., & Lu, J. (2021). Identification of the control factors affecting water quality variation at multi-spatial scales in a headwater watershed. Environmental Science and Pollution Research International, 28(9), 11129–11141. https://doi.org/10.1007/s11356-020-11352-4

    Article  CAS  Google Scholar 

  • Zhang, W., Chen, D., & Li, H. (2018). Spatio-temporal dynamics of water quality and their linkages with the watershed landscape in highly disturbed headwater watersheds in China. Environmental Science and Pollution Research International, 25(35), 35287–35300. https://doi.org/10.1007/s11356-018-3310-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of São Paulo and the Federal University of São Carlos for the structural support; Dr. Adriana Cristina Poli Miwa (University of São Paulo) and Monica Almeida (Federal University of São Carlos) for helping in the samples processing; Dr. André Cordeiro dos Santos (Federal University of São Carlos) for helping with the water quality analysis. We also thank FAPESP for the research funding.

Funding

This study was supported by the São Paulo Research Foundation (FAPESP, process number 2013/03586-6 and 2018/21612–8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization [Kaline de Mello, Roberta Averna Valente, Timothy Randhir], Methodology: [Kaline de Mello, Roberta Averna Valente], Formal analysis and investigation: [Kaline de Mello], Writing–original draft preparation: [Kaline de Mello, Marina Pannunzio Ribeiro]; Writing–review and editing: [Roberta Averna Valente, Timothy Randhir], Funding acquisition: [Kaline de Mello, Roberta Averna Valente], Resources: [Kaline de Mello], Supervision: [Roberta Averna Valente].

Corresponding author

Correspondence to Marina Pannunzio Ribeiro.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello, K., Valente, R.A., Ribeiro, M.P. et al. Effects of forest cover pattern on water quality of low-order streams in an agricultural landscape in the Pirapora river basin, Brazil. Environ Monit Assess 194, 189 (2022). https://doi.org/10.1007/s10661-022-09854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09854-4

Keywords

Navigation