Skip to main content
Log in

Source, degree and potential health risk of metal(loid)s contamination on the water and soil in the Söke Basin, Western Anatolia, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water and soil quality are the two most important parameters for sustainable agriculture and regional development in the basin. This study focused on the causes of soil and water contamination and the potential impact of drinking water on community health. Reasons for metal(loid)s enrichment in the water and soil in the Söke Basin were examined by considering anthropogenic and geogenic inputs. Four rock samples in the drainage network, 28 soil samples, and 29 water samples in the Söke Plain were collected. All samples were analyzed for metal(loid)s by inductively coupled plasma-mass spectrometry (ICP-MS). The carcinogenic and non-carcinogenic effects of water on human health were calculated mathematically. Potential ecological risk index (PERI), enrichment factor (EF), and ecological risk (ER) were calculated for the soil samples. In addition, principal component analysis (PCA) with Varimax rotation and Kaiser normalization was applied to the soil data set. Cr, Ni, and Cd contamination in soils was associated with anthropogenic inputs, while arsenic contamination was related to both anthropogenic and geogenic inputs. As, B, Ba, Pb, and Sb contamination was found in some drinking water. As contamination has been clearly found to be caused by natural geological processes in and around Lake Azap. It was determined that metal(loid)s enrichment occurred in drinking water due to the mixing of geothermal waters affected by seawater intrusion with surface and groundwater. Contamination inputs were geogenic, but their negative impacts appearing in surface water and drinking water occurred due to human influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

AD:

Anno Domini

BCE:

Before the common era

BMR:

Büyük Menderes River

BV:

Background value

CDI:

Chronic daily intake

CSQG:

Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health

EF:

Enrichment factor

ER:

Ecological risk

ESRI:

Environmental System Research Institute

EU:

European Union

FAO:

Food and Agriculture Organization of the United Nation

HQ:

Hazard quotient

ICP-MS:

Inductively Coupled Plasma-Mass Spectrometer

IDW:

Inverse distance weighting

MEF:

Ministry of the Environment of Finland

Myr:

Million years

MTA:

General Directorate of Mineral Research and Exploration of Turkey

NTP:

National Toxicology Program

PCA:

Principal component analysis

PERI:

Potential ecological risk index

ppm:

Parts per million

RfD:

Oral reference dose

TS:

Turkish Standards

UN:

United Nations

USEPA IRIS:

United States Environmental Protection Agency’s Integrated Risk Information System

USEPA:

United States Environmental Protection Agency

WHO:

World Health Organization

References

  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846.

    Google Scholar 

  • Ackermann, F. (1980). A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environmental Technology, 1(11), 518–527.

    CAS  Google Scholar 

  • Ahamad, M. I., Song, J., Sun, H., Wang, X., Mehmood, M. S., Sajid, M., Su, P., & Khan, A. J. (2020). Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe River, China. International Journal of Environmental Research and Public Health, 17(3), 1070.

    CAS  Google Scholar 

  • Akar, D. (2007). Potential boron pollution in surface water, crop, and soil in the Lower Buyuk Menderes Basin. Environmental Engineering Science, 24(9), 1273–1279.

    CAS  Google Scholar 

  • Akinci, G., Gok, G., & Bilgin, M. (2019). Heavy metals bioconcentration and translocation in plants: The influence of a thermal power site. Environmental Engineering and Management Journal, 18(8), 1625–1637.

    Google Scholar 

  • Akoto, O., Nimako, C., Asante, J., & Bailey, D. (2016). Heavy metals enrichment in surface soil from abandoned waste disposal sites in a hot and wet tropical area. Environmental Processes, 3(4), 747–761.

    Google Scholar 

  • Aksu, A. E., Piper, D. J. W., & Konuk, T. (1987). Quaternary growth patterns of Büyük Menderes and Küçük Menderes deltas, western Turkey. Sedimentary Geology, 52(3–4), 227–250.

    Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Springer, Dordrecht.

  • Andrews, D. (2015). The circular economy, design thinking and education for sustainability. Local Economy, 30(3), 305–315.

    Google Scholar 

  • Arslan, Ş, & Çelik, M. (2015). Assessment of the pollutants in soils and surface waters Around Gümüşköy Silver Mine (Kütahya, Turkey). Bulletin of Environmental Contamination and Toxicology, 95(4), 499–506.

    CAS  Google Scholar 

  • Bacon, A. P. C., Froome, K., Gent, A. E., Cooke, T. K., & Sowerby, P. (1967). Lead poisoning from drinking soft water. The Lancet, 289(7484), 264–266.

    Google Scholar 

  • Bakirdere, S., Orenay, S., & Korkmaz, M. (2010). Effect of boron on human health. The Open Mineral Processing Journal, 3(1).

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Geology & Geophysics, 5(1), 1–4.

    Google Scholar 

  • Barbieri, M., Sappa, G., Vitale, S., Parisse, B., & Battistel, M. (2014). Soil control of trace metals concentrations in landfills: A case study of the largest landfill in Europe, Malagrotta, Rome. Journal of Geochemical Exploration, 143, 146–154.

    CAS  Google Scholar 

  • Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., & Baize, D. (2010). Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157(3–4), 165–174.

    CAS  Google Scholar 

  • Boyacioglu, H., Boyacioglu, H., & Gunduz, O. (2005). Application of factor analysis in the assessment of surface water quality in Buyuk Menderes River Basin. European Water, 9(10), 43–49.

    Google Scholar 

  • Bozkurt, E., & Oberhänsli, R. (2001). Menderes Massif (Western Turkey): Structural, metamorphic and magmatic evolution–a synthesis. International Journal of Earth Sciences, 89, 679–708.

    Google Scholar 

  • Brenniman, G. R., Kojola, W. H., Levy, P. S., Carnow, B. W., & Namekata, T. (1981). High barium levels in public drinking water and its association with elevated blood pressure. Archives of Environmental Health: An International Journal, 36(1), 28–32.

    CAS  Google Scholar 

  • Brown, M. J., & Margolis, S. (2012). Lead in drinking water and human blood lead levels in the United States. Morbidity and Mortality Weekly Report, 61, 1–9.

    Google Scholar 

  • Brückner, H., Herda, A., Kerschner, M., Müllenhoff, M., & Stock, F. (2017). Life cycle of estuarine islands—From the formation to the landlocking of former islands in the environs of Miletos and Ephesos in western Asia Minor (Turkey). Journal of Archaeological Science: Reports, 12, 876–894.

    Google Scholar 

  • Bülbül, A. (2015). Mixing of geothermal and non-geothermal fluids in shallow aquifers in the Germencik-Nazilli area, Büyük Menderes Basin (SW Turkey). Geodinamica Acta, 27(1), 67–81.

    Google Scholar 

  • Çakmak, İ, Kalaycı, M., Ekiz, H., Braun, H. J., Kılınç, Y., & Yılmaz, A. (1999). Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60(1–2), 175–188.

    Google Scholar 

  • Candan, O., Oberhansli, R., Dora, O. Ö., Çetinkaplan, M., Koralay, E., Rimmele, G., et al. (2011). Polymetamorphic evolution of the Pan-African Basement and Palaeozoic-Early tertiary cover series of the Menderes Massif. Bulletin of the Mineral Research and Exploration, 142(142), 121–163.

    Google Scholar 

  • Çevik, F., Göksu, M. Z. L., Derici, O. B., & Fındık, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1–4), 309.

    Google Scholar 

  • Chen, C. J., & Wang, C. J. (1990). Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Research, 50(17), 5470–5474.

    CAS  Google Scholar 

  • Chen, C. J., Chuang, Y. C., Lin, T. M., & Wu, H. Y. (1985). Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Research, 45(11 Part 2), 5895–5899.

  • Chen, Y., Wang, J., Shi, G., Sun, X., Chen, Z., & Xu, S. (2011). Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai. Environmental Geochemistry and Health, 33(6), 515–523.

    CAS  Google Scholar 

  • Cho, I. G., Park, M. K., Cho, H. K., Jeon, J. W., Lee, S. E., & Choi, S. D. (2019). Characteristics of metal contamination in paddy soils from three industrial cities in South Korea. Environmental Geochemistry and Health, 41(5), 1895–1907.

    CAS  Google Scholar 

  • Ciupa, T., Suligowski, R., & Kozłowski, R. (2020). Trace metals in surface soils under different land uses in Kielce city, south-central Poland. Environmental Earth Sciences, 79(1), 14.

    CAS  Google Scholar 

  • Cosgrove, E., McNulty, P., McNulty, F., Brown, M. J., Okonski, L., Olkowski, L., Madigan, P., & Schmidt, J. (1989). Childhood lead poisoning: case study traces source to drinking water. Journal of Environmental Health, 346–349.

  • CSQG (Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health). (2010). Guidelines for agricultural soil quality limit values. http://st-ts.ccme.ca/en/index.html. Accessed 3 May 2020.

  • Demirel, Z., & Yildirim, N. (2002). Boron pollution due to geothermal wastewater discharge into the Büyük Menderes River, Turkey. International Journal of Environment and Pollution, 18(6), 602–608.

    CAS  Google Scholar 

  • Deuel, L. E., & Swoboda, A. R. (1972). Arsenic toxicity to cotton and soybeans. Journal of Environmental Quality, 1(3), 317–320.

    CAS  Google Scholar 

  • Dieter, M. P., Jameson, C. W., Elwell, M. R., Lodge, J. W., Hejtmancik, M., Grumbein, S. L., Ryan, M., & Peters, A. C. (1991). Comparative toxicity and tissue distribution of antimony potassium tartrate in rats and mice dosed by drinking water or intraperitoneal injection. Journal of Toxicology and Environmental Health, Part A Current Issues, 34(1), 51–82.

    CAS  Google Scholar 

  • Doležalová Weissmannová, H., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 4495.

    Google Scholar 

  • Dora, O. Ö. (2011). Menderes Masifindeki jeolojik araştirmalarin tarihsel gelişimi. Bulletin of the Mineral Research and Exploration, 142, 1–23.

    Google Scholar 

  • Dunn, J. T. (1928). A curious case of antimony poisoning. The Analyst, 531, 532–533.

    Google Scholar 

  • Emmerson, R. H. C., O’Reilly-Wiese, S. B., Macleod, C. L., & Lester, J. N. (1997). A multivariate assessment of metal distribution in inter-tidal sediments of the Blackwater Estuary, UK. Marine Pollution Bulletin, 34(11), 960–968.

    CAS  Google Scholar 

  • ESRI (Environmental System Research Institute). (2020). ArcMap v10.5.1. 380 New York Street, Redlands, California.

  • EU (European Union). (2014). Drinking water regulations. S.I. No. 122 of 2014.

  • Fail, P. A., Chapin, R. E., Price, C. J., & Heindel, J. J. (1998). General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reproductive Toxicology, 12(1), 1–18.

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2007). The environmental management (Soil quality standards) regulations. http://extwprlegs1.fao.org/docs/pdf/tan151538.pdf. Accessed 3 May 2020.

  • Faroqhi, S., McGowan, B., & Pamuk, S. (1994). An Economic and Social History of the Ottoman Empire, 1300–1914. Cambridge University Press.

    Google Scholar 

  • Finnegan, P., & Chen, W. (2012). Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology, 3, 182.

    CAS  Google Scholar 

  • Fishel, F. M. (2005). Pesticide toxicity profile: Copper-based pesticides (UF/IFAS Extension PI-66). Gainesville, FL, USA.

  • Gemici, Ü., & Tarcan, G. (2002). Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts. Environmental Geology, 43(1–2), 87–98.

    CAS  Google Scholar 

  • Gemici, Ü., Tarcan, G., Helvacı, C., & Somay, A. M. (2008). High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadiç borate deposits (Western Turkey). Applied Geochemistry, 23(8), 2462–2476.

    CAS  Google Scholar 

  • Glennon, M. M., Harris, P., Ottesen, R. T., Scanlon, R. P., & O’connor, P. J. (2014). The Dublin SURGE Project: Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environmental Geochemistry and Health, 36(2), 235–254.

    CAS  Google Scholar 

  • Goldschmidt, V. M. (1937). The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. Journal of the Chemical Society, 655–673.

  • Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., ... & Li, Z. G. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32(1), 59–72.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • Hetzel, R., & Reischmann, T. (1996). Intrusion age of Pan-African augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation. Geological Magazine, 133(5), 565–572.

    CAS  Google Scholar 

  • Ho, K. T., & Burgess R. M. (2009). Marine sediment toxicity identification evaluations (TIEs): History, principles, methods, and future research. In T. A., Kassim, & D., Barcelo (Eds.), Contaminated Sediments (Vol 5/T, pp. 75-95). Springer-Verlag, Berlin, Heidelberg.

  • Jha, P., Banerjee, S., Bhuyan, P., Sudarshan, M., & Dewanji, A. (2020). Elemental distribution in urban sediments of small waterbodies and its implications: A case study from Kolkata, India. Environmental Geochemistry and Health, 42(2), 461–482.

    CAS  Google Scholar 

  • Kara, M. (2020). Assessment of sources and pollution state of trace and toxic elements in street dust in a metropolitan city. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00560-z

    Article  Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.

    Google Scholar 

  • Knipping, M., Müllenhoff, M., & Brückner, H. (2008). Human induced landscape changes around Bafa Gölü (western Turkey). Vegetation History and Archaeobotany, 17(4), 365–380.

    Google Scholar 

  • Koç, C. (2008). The environmental effects of salinity load in Great Menderes Basin irrigation schemes. Environmental Monitoring and Assessment, 146(1–3), 479–489.

    Google Scholar 

  • Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental Geochemistry and Health, 36(4), 797–814.

    CAS  Google Scholar 

  • Küçüksümbül, A., Akar, A. T., & Tarcan, G. (2020). Hydrogeological and hydrochemical investigation of Lake Bafa: sustainable water resource management. Journal of Geological Engineering, 44(2). (In Turkish).

  • Kumru, M. N., & Bakac, M. (2003). R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey. Journal of Geochemical Exploration, 77(2–3), 81–91.

    CAS  Google Scholar 

  • Kurmuş, O. (1982). Admission of imperialism in Turkey. Savaş Yayınları (In Turkish).

  • Li, C., Cao, J., Yao, L., Wu, Q., & Lv, J. (2020). Pollution status and ecological risk of heavy metals in the soils of five land-use types in a typical sewage irrigation area, eastern China. Environmental Monitoring and Assessment, 192(7), 1–14.

    Google Scholar 

  • Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2–3), 223–230.

    CAS  Google Scholar 

  • Matanoski, G. M., Landau, E., Tonascia, J., Lazar, C., Elliott, E. A., McEnroe, W., & King, K. (1981). Cancer mortality in an industrial area of Baltimore. Environmental Research, 25(1), 8–28.

    CAS  Google Scholar 

  • McLaughlin, M. C. (1956). Lead poisoning in children in New York City, 1950–1954; an epidemiologic study. New York State Journal of Medicine, 56(23), 3711–3714.

    CAS  Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4).

  • MEF (Ministry of the Environment, Finland). (2007). Government Decree on the Assessment of Soil Contamination and Remediation Needs. https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf. Accessed 3 May 2020.

  • Mitchell, C. C., & Tu, S. (2006). Nutrient accumulation and movement from poultry litter. Soil Science Society of America Journal, 70(6), 2146–2153.

    CAS  Google Scholar 

  • Moncrieff, A. A., Koumides, O. P., Clayton, B. E., Patrick, A. D., Renwick, A. G. C., & Roberts, G. E. (1964). Lead poisoning in children. Archives of Disease in Childhood, 39(203), 1.

    CAS  Google Scholar 

  • MTA (General Directorate of Mineral Research and Exploration of Turkey). (2002). Scale 1:500.000 Aydın, Denizli, Muğla Region Geological Map.

  • Müllenhoff, M., Handl, M., Knipping, M., & Brückner, H. (2004). The evolution of Lake Bafa (Western Turkey)–Sedimentological, microfaunal and palynological results. Coastline Reports, 1(2004), 55–66.

    Google Scholar 

  • Naccarato, A., Tassone, A., Cavaliere, F., Elliani, R., Pirrone, N., Sprovieri, F., Tagarelli A. & Giglio, A. (2020). Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Science of The Total Environment, 749, 141438.

  • Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, 28(4), 383–387.

    CAS  Google Scholar 

  • Novichev, A. D. (1966). The Development of Agriculture. In C. Issawi (Ed.), Anatolia in The Economic History of the Middle East 1800–1914. Chicago and London: University of Chicago Press.

    Google Scholar 

  • NTP (National Toxicology Program). (1987). Toxicology and Carcinogenesis Studies of Boric Acid (CAS No. 10043–35–3) in B6C3F1 Mice (Feed Studies). National Toxicology Program technical report series, 324, 1.

  • Paul, J. H., Rose, J. B., Jiang, S. C., Zhou, X., Cochran, P., Kellogg, C., Kang, P. C., Griffin, D., Farrah, S., & Lukasik, J. (1997). Evidence for groundwater and surface marine water contamination by waste disposal wells in the Florida Keys. Water Research, 31(6), 1448–1454.

    CAS  Google Scholar 

  • Prasad, S., Saluja, R., Joshi, V., & Garg, J. K. (2020). Heavy metal pollution in surface water of the Upper Ganga River, India: Human health risk assessment. Environmental Monitoring and Assessment, 192(11), 1–15.

    Google Scholar 

  • Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40(1), 2–1.

    Google Scholar 

  • Ris, M. D., Dietrich, K. N., Succop, P. A., Berger, O. G., & Bornschein, R. L. (2004). Early exposure to lead and neuropsychological outcome in adolescence. Journal of the International Neuropsychological Society, 10(2), 261–270.

    CAS  Google Scholar 

  • Ross, S. M. (1994). The meaning of metal toxicity in soil-plant systems. Toxic metals in soil-plant systems, 27–62. Wiley.

  • Roth, F. (1958). Über den Bronchialkrebs arsengeschädigter Winzer. Virchows Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medizin, 331(2), 119–137.

    CAS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. The Crust, 3, 1–64.

    Google Scholar 

  • Ryu, J. E., Ziegler, E. E., Nelson, S. E., & Fomon, S. J. (1983). Dietary intake of lead and blood lead concentration in early infancy. American Journal of Diseases of Children, 137(9), 886–891.

    Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    CAS  Google Scholar 

  • Sakan, S., Popović, A., Anđelković, I., & Đorđević, D. (2016). Aquatic sediments pollution estimate using the metal fractionation, secondary phase enrichment factor calculation, and used statistical methods. Environmental Heochemistry and Health, 38(3), 855–867.

    CAS  Google Scholar 

  • Saljnikov, E., Mrvić, V., Čakmak, D., Jaramaz, D., Perović, V., Antić-Mladenović, S., & Pavlović, P. (2019). Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant. Environmental Geochemistry and Health, 41(5), 2265–2279.

    CAS  Google Scholar 

  • Schroeder, H. A., Mitchener, M., & Nason, A. P. (1970). Zirconium, niobium, antimony, vanadium and lead in rats: Life term studies. The Journal of Nutrition, 100(1), 59–68.

    CAS  Google Scholar 

  • Shannon, M., & Graef, J. W. (1989). Lead intoxication: From lead-contaminated water used to reconstitute infant formula. Clinical Pediatrics, 28(8), 380–382.

    CAS  Google Scholar 

  • Shil, S., & Singh, U. K. (2019). Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecological Indicators, 106, 105455.

  • Simsek, S. (2003). Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics, 32(4–6), 669–678.

    CAS  Google Scholar 

  • Sinex, S. A., & Wright, D. A. (1988). Distribution of trace metals in the sediments and biota of Chesapeake Bay. Marine Pollution Bulletin, 19(9), 425–431.

    CAS  Google Scholar 

  • Slavković, L., Škrbić, B., Miljević, N., & Onjia, A. (2004). Principal component analysis of trace elements in industrial soils. Environmental Chemistry Letters, 2(2), 105–108.

    Google Scholar 

  • Somay, M. A., & Gemici, U. (2012). Groundwater quality degradation in the Buyuk Menderes River coastal wetland. Water, Air, & Soil Pollution, 223(1), 15–27.

    CAS  Google Scholar 

  • Sponza, D., & Karaoǧlu, N. (2002). Environmental geochemistry and pollution studies of Aliaǧa metal industry district. Environment International, 27(7), 541–553.

    CAS  Google Scholar 

  • Sümer, Ö., İnci, U., & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148–175.

    Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui. Northeast China. Chemosphere, 92(5), 517–523.

    CAS  Google Scholar 

  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International Journal of Environmental Research and Public Health, 7(12), 4267–4277.

    CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627.

    CAS  Google Scholar 

  • Şengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3–4), 181–241.

    Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology (pp. 133–164). Springer, Basel.

  • Topal, S. (2019). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis. Journal of Mountain Science, 16(4), 909–923.

    Google Scholar 

  • Triantafyllidou, S., & Edwards, M. (2012). Lead (Pb) in tap water and in blood: Implications for lead exposure in the United States. Critical Reviews in Environmental Science and Technology, 42(13), 1297–1352.

    CAS  Google Scholar 

  • TS (Turkish Standards). (2010). Regulation on Soil Contamination Control and Point Source Contaminated Field. https://www.resmigazete.gov.tr/eskiler/2010/06/20100608-3.htm. Accessed 3 May 2020.

  • TS (Turkish Standards). (2013). Turkish Standards Regulation on Water Intended for Human Consumption. http://www.resmigazete.gov.tr/eskiler/2013/03/20130307-7.htm. Accessed 20 Jan 2020.

  • Tseng, W. P. (1977). Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109–119.

    CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    CAS  Google Scholar 

  • UN (United Nations). (2019). World Population Prospects. https://population.un.org/wpp/Download/Standard/Population/. Accessed 3 May 2020.

  • USEPA (United States Environmental Protection Agency). (1992). Definitions and General Principles for Exposure Assessment. Guidelines for exposure assessment. Washington, DC, USA: Office of Pesticide Programs.

  • USEPA (United States Environmental Protection Agency). (1999). Guidance for Performing Aggregate Exposure and Risk Assessments. Washington, DC, USA: Office of Pesticide Programs.

  • USEPA (United States Enviromental Protection Agency). (2018). Drinking Water Standards and Health Advisories Table. Washington, DC, USA: Office of Water.

  • USEPA IRIS (United States Environmental Protection Agency’s Integrated Risk Information System). (2020). https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm. Accessed 3 May 2020.

  • Vaverková, M. D., Elbl, J., Radziemska, M., Adamcová, D., Kintl, A., Baláková, L., Barton, S., Hladky, J., Kynicky, J., & Brtnický, M. (2018). Environmental risk assessment and consequences of municipal solid waste disposal. Chemosphere, 208, 569–578.

    Google Scholar 

  • Vengosh, A., Helvacı, C., & Karamanderesi, I. H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry, 17(3), 163–183.

    CAS  Google Scholar 

  • Wang, H., Shen, C., Kang, Y., Deng, Q., & Lin, X. (2020). Spatial distribution of pollution characteristics and human health risk assessment of exposure to heavy elements in road dust from different functional areas of Zhengzhou, China. Environmental Science and Pollution Research, 27, 26650–26667.

    CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232.

    CAS  Google Scholar 

  • White, K. D., & Tittlebaum, M. E. (1985). Metal Distribution and Contamination in Sediments. Journal of Environmental Engineering, 111(2), 161–175.

    CAS  Google Scholar 

  • WHO (World Health Organization). (2017) Guidelines for drinking-water quality: Fourth edition incorporating the first addendum (pp. 307–433). Geneva.

  • Witter, R., McKenzie, L., Towle, M., Stinson, K., Scott, K., Newman, L., & Adgate, J. (2010). Health impact assessment for battlement mesa. Colorado School of Public Health.

    Google Scholar 

  • Witter, R., Stinson, K., Sackett, H., Putter, S., Kinney, G., Teitelbaum, D., & Newman, L. (2008). Potential exposure-related human health effects of oil and gas development: A white paper. Colorado School of Public Health.

    Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182.

    CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070.

    CAS  Google Scholar 

  • Zhang, L., Yan, C., Guo, Q., Zhang, J., & Ruiz-Menjivar, J. (2018). The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. International Journal of Low-Carbon Technologies, 13(4), 338–352.

    Google Scholar 

  • Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74(6), 5097–5110.

    CAS  Google Scholar 

  • Zheng, L. G., Liu, G. J., Kang, Y., & Yang, R. K. (2010). Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China. Environmental Monitoring and Assessment, 166(1–4), 379–386.

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Dokuz Eylül University Research Fund (2017.KB.FEN.014).

Author information

Authors and Affiliations

Authors

Contributions

Anıl Küçüksümbül conceived the research, collected soil and water samples, interpreted the principal component analysis, and wrote the article. Ali Toygar Akar contributed to the using GIS and its outputs. Gültekin Tarcan made contributions to the research and revised the manuscript critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anıl Küçüksümbül.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçüksümbül, A., Akar, A.T. & Tarcan, G. Source, degree and potential health risk of metal(loid)s contamination on the water and soil in the Söke Basin, Western Anatolia, Turkey. Environ Monit Assess 194, 6 (2022). https://doi.org/10.1007/s10661-021-09670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09670-2

Keywords

Navigation