Skip to main content
Log in

Poly (4,4′-methylenedianiline)-graphene oxide nanocomposite: synthesize and application in removal of benzothiophene from model liquid fuel

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The adsorption of sulfur-containing compounds from fuels on polymer nanocomposite adsorbents modified with carbon-based materials was investigated. This work reports the removal of benzothiophene from the model liquid fuel using a novel adsorbent prepared by nanopoly (4,4′-methylenedianiline)-graphene oxide (NPMDA/GO) composite. The adsorbent was successfully synthesized with the in situ electrochemical method and characterized using thermal gravimetric analysis (TGA), field-scattering scanning electron microscopy (FE-SEM), transient electron microscopy (TEM), X-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR). The results showed that the presence of graphene oxide (GO) nanosheets in NPMDA/GO composite adsorbent due to its high tendency to sulfur would increase the adsorption of benzothiophene compared to unmodified nanopoly (4,4′-methylenedianiline) (NPMDA). The π_complexation, oxygenated organic functional groups, and layered sheets of graphene oxide improve adsorption capacity for desulfurization. The NPMDA/GO composite presented maximum efficiency (63.33%) at 30 mg/L initial concentration, 120 mg adsorbent dose, and 120 min contact time at 25 °C. Furthermore, the adsorbent shows an almost good reusability after four cycles (67.12 mg/g sulfur absorption capacity). Pseudo-second-order model (R2 = 0.9975) and the Freundlich isotherm (R2 = 0.8813) were used to describe the adsorption process. Findings confirm that NPMDA/GO composite can be applicable for removal of benzothiophene from liquid fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All necessary data are present within the manuscript.

References

  • Abdelhafez, A. A., & Li, J. (2016). Removal of Pb (II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers, 61, 367–375

    Article  CAS  Google Scholar 

  • Ahmad, S., Ahmad, M. I., Naeem, K., Humayun, M., & Sebt-E-Zaeem, F. F. (2016). Oxidative desulfurization of tirepyrolysis oil. Chemical Industry and Chemical Engineering Quarterly, 22, 249–254

    Article  CAS  Google Scholar 

  • Basu, H., Saha, S., Kailasa, S. K., & Singhal, R. K. (2020). Present status of hybrid materials for potable water decontamination: A review. Environmental Science: Water Research & Technology, 6(12), 3214–3248

    Google Scholar 

  • Chen, M. M. (2016). Thermal analysis. Materials Science and Engineering of Carbon, 249–272. Butterworth-Heinemann

  • Díaz, I. G., Alguacil, F. J., Escudero, E., & López, F. A. (2020). Evaluation of La (III) and Ce (III) Adsorption from aqueous solution using carbon nanotubes adsorbent

  • Długosz, O., & Banach, M. (2018). Kinetic, isotherm and thermodynamic investigations of the adsorption of Ag+ and Cu2+ on vermiculite. Journal of Molecular Liquids, 258, 295–309.

    Article  Google Scholar 

  • Duan, F., Chen, C., Wang, G., Yang, Y., Liu, X., & Qin, Y. (2014). Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer. RSC Advances, 4(3), 1469–1475.

    Article  CAS  Google Scholar 

  • Fadillah, G., Saleh, T. A., Wahyuningsih, S., Putri, E. N. K., & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140

  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2–30

    Article  Google Scholar 

  • Giżyński, M., & Romelczyk-Baishya, B. (2021). Investigation of carbon fiber–reinforced thermoplastic polymers using thermogravimetric analysis. Journal of Thermoplastic Composite Materials, 34(1), 126–140

    Article  Google Scholar 

  • Hassan, H. K., Atta, N. F., & Galal, A. (2012). Electropolymerization of aniline over chemically converted graphene-systematic study and effect of dopant. International Journal of Electrochemical Science, 7, 11161–11181

    CAS  Google Scholar 

  • Hernández-Maldonado, A. J., & Yang, R. T. (2004). New sorbents for desulfurization of diesel fuels via π-complexation. AIChE Journal, 50(4), 791–801

    Article  Google Scholar 

  • Hu, T. P., Zhang, Y. M., Zheng, L. H., & Fan, G. Z. (2010). Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface. Journal of Fuel Chemistry and Technology, 38(6), 722–729

    Article  CAS  Google Scholar 

  • Kaur, S., Rani, S., & Mahajan, R. K. (2013). Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents. Journal of Chemistry

  • Khan, N. A., & Jhung, S. H. (2012a). Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid. Fuel Processing Technology, 100, 49–54

    Article  CAS  Google Scholar 

  • Khan, N. A., & Jhung, S. H. (2012b). Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene. Angewandte Chemie International Edition, 51(5), 1198–1201

    Article  CAS  Google Scholar 

  • Khan, N. A., Bhadra, B. N., & Jhung, S. H. (2018). Heteropoly acid-loaded ionic liquid@ metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 334, 2215–2221

    Article  CAS  Google Scholar 

  • Lee, K. X., & Valla, J. A. (2017). Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Applied Catalysis b: Environmental, 201, 359–369

    Article  CAS  Google Scholar 

  • Li, Y., Zheng, J. L., Feng, J., & Jing, X. L. (2013). Polyaniline micro-/nanostructures: Morphology control and formation mechanism exploration. Chemical Papers, 67(8), 876–890

    Article  CAS  Google Scholar 

  • Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297–2302

    Article  CAS  Google Scholar 

  • Liu, B., Vikrant, K., Kim, K. H., Kumar, V., & Kailasa, S. K. (2020). Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environmental Science: Nano, 7(5), 1319–1347

    CAS  Google Scholar 

  • Liu, H., & Qiu, H. (2020). Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review. Chemical Engineering Journal, 393, 124691

  • Liu, W., Liu, X., Yang, Y., Zhang, Y., & Xu, B. (2014). Selective removal of benzothiophene and dibenzothiophene from gasoline using double-template molecularly imprinted polymers on the surface of carbon microspheres. Fuel, 117, 184–190

    Article  CAS  Google Scholar 

  • Lu, H., Zhang, S., Guo, L., & Li, W. (2017). Applications of graphene-based composite hydrogels: A review. RSC Advances, 7(80), 51008–51020

    Article  CAS  Google Scholar 

  • Mark, J. E. (2009). Polymer Data Handbook, Oxford University

  • Mashkoor, F., & Nasar, A. (2020). Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environmental Chemistry Letters, 18(3), 605–629

    Article  CAS  Google Scholar 

  • Matloob, A. M., Abd El-Hafiz, D. R., Saad, L., Mikhail, S., & Guirguis, D. (2019). Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel. Journal of Hazardous Materials, 373, 447–458

    Article  Google Scholar 

  • Mohammad, S. G., Ahmed, S. M., Amr, A. E. G. E., & Kamel, A. H. (2020). Porous activated carbon from lignocellulosic agricultural waste for the removal of acetampirid pesticide from aqueous solutions. Molecules, 25(10), 2339

    Article  CAS  Google Scholar 

  • Mohseni, E., Hamdi, Z., Parvizimehr, A., & Rahmani, A. (2021). Adsorptive desulphurisation of benzothiophene and dibenzothiophene from model fuels with modified vermiculite. International Journal of Environmental Analytical Chemistry, 1–15. https://doi.org/10.1080/03067319.2021.1942461

  • Mohseni, E., Yaftian, M.R., Shayani-jam, H., Zamani, A., & Piri, F. (2020). Molecularly imprinted poly (4, 4′-methylenedianiline) as electrochemical sensor for determination of 1-benzothiophene. Synthetic Metals, 259, 116252

  • Montazeri, S. M., & Sadrnezhaad, S. K. (2019). Kinetics of sulfur removal from Tehran vehicular gasoline by g-C3N4/SnO2 nanocomposite. ACS Omega, 4(8), 13180–13188

    Article  CAS  Google Scholar 

  • Nuntang, S., Prasassarakich, P., & Ngamcharussrivichai, C. (2008). Comparative study on adsorptive removal of thiophenic sulfurs over Y and USY zeolites. Industrial & Engineering Chemistry Research, 47(19), 7405–7413

    Article  CAS  Google Scholar 

  • Palomino, J. M., Tran, D. T., Kareh, A. R., Miller, C. A., Gardner, J. M., Dong, H., & Oliver, S. R. (2015). Zirconia-silica based mesoporous desulfurization adsorbents. Journal of Power Sources, 278, 141–148

    Article  CAS  Google Scholar 

  • Paszkiewicz, S., & Szymczyk, A. (2019). Graphene-based nanomaterials and their polymer nanocomposites. In Nanomaterials and polymer nanocomposites, 177–216. Elsevier

  • Polini, A., & Yang, F. (2017). Physicochemical characterization of nanofiber composites. In Nanofiber composites for biomedical applications, 97–115. Woodhead Publishing

  • Qiu, J., Wang, G., Bao, Y., Zeng, D., & Chen, Y. (2015). Effect of oxidative modification of coal tar pitch-based mesoporous activated carbon on the adsorption of benzothiophene and dibenzothiophene. Fuel Processing Technology, 129, 85–90

    Article  CAS  Google Scholar 

  • Rai, P. K., Lee, J., Kailasa, S. K., Kwon, E. E., Tsang, Y. F., Ok, Y. S., & Kim, K. H. (2018). A critical review of ferrate (VI)-based remediation of soil and groundwater. Environmental Research, 160, 420–448

    Article  CAS  Google Scholar 

  • Saleh, T. A., Sulaiman, K. O., & AL-Hammadi, S.A., Dafalla, H. and Danmaliki, G.I., . (2017). Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation. Journal of Cleaner Production, 154, 401–412

    Article  CAS  Google Scholar 

  • Sekar, R., Kailasa, S. K., Li, W. S., Wu, H. C., & Wu, H. F. (2013). Rapid separation of acetophenone and its monohydroxy isomers by capillary electrophoresis. Chinese Chemical Letters, 24(9), 833–836

    Article  CAS  Google Scholar 

  • Shahabuddin, S., Sarih, N. M., Afzal Kamboh, M., Rashidi Nodeh, H., & Mohamad, S. H. (2016). Synthesis of polyaniline-coated graphene oxide@SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers, 8(9), 305

    Article  Google Scholar 

  • Sharif, F., & Roberts, E. P. (2020). Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. Chemosphere, 241, 125020

  • Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263

    Article  CAS  Google Scholar 

  • Sun, R., Li, L., Feng, C., Kitipornchai, S., & Yang, J. (2018). Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. European Polymer Journal, 98, 475–482

    Article  CAS  Google Scholar 

  • Sun, X., Huang, C., Wang, L., Liang, L., Cheng, Y., Fei, W., & Li, Y. (2021). Recent progress in graphene/polymer nanocomposites. Advanced Materials, 33(6), 2001105

    Article  CAS  Google Scholar 

  • Toolabi, A., Mohseni, E., Zare, M. R., Mengelizadeh, N., Rostami, E., Taghavig, M., & Kharazi, S. (2021). Effective removal of Diazinon and Imidacloprid toxins from aqueous samples by nano poly (4,4′-methylenedianiline) / graphene oxide. Desalination and Water Treatment. https://doi.org/10.5004/dwt.2021.27516

    Article  Google Scholar 

  • Ullah, L., Zhao, G., Hedin, N., Ding, X., Zhang, S., Yao, X., Nie, Y., & Zhang, Y. (2019). Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoric acid. Chemical Engineering Journal, 362, 30–40

    Article  CAS  Google Scholar 

  • Yang, L., Wang, Y., Huang, D., Luo, G., & Dai, Y. (2007). Preparation of high performance adsorbents by functionalizing mesostructured silica spheres for selective adsorption of organosulfur compounds. Industrial & Engineering Chemistry Research, 46(2), 579–583

    Article  CAS  Google Scholar 

  • Zamanian, Z., Yousefinejad, S., Khoshnoud, M. J., Golbabaie, F., Farhang Dehghan, S., Modaresi, A., Amanat, S., Reza Zare, M., & Rahmani, A. (2018). Toxic effects of subacute inhalation exposure to trichloroethylene on serum lipid profile, glucose and biochemical parameters in Sprague-Dawley rats. Inhalation Toxicology, 30(9–10), 354–360

    Article  CAS  Google Scholar 

  • Zamanian, Z., Yousefinejad, S., Khoshnoud, M. J., Golbabaie, F., Zare, M. R., Modaresi, A., Zarei, M. R., & Rahmani, A. (2019). Toxicological effects of inhalation exposure to trichloroethylene on serum immunoglobulin and electrolyte levels in rats. Health Scope, 8(3)

  • Zhang, K., Zhang, L. L., Zhao, X. S., & Wu, J. (2010). Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 22(4), 1392–1401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrasoul Rahmani.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni, E., Rahmani, A. & Hamdi, Z. Poly (4,4′-methylenedianiline)-graphene oxide nanocomposite: synthesize and application in removal of benzothiophene from model liquid fuel. Environ Monit Assess 193, 737 (2021). https://doi.org/10.1007/s10661-021-09507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09507-y

Keywords

Navigation