Skip to main content

Advertisement

Log in

Magnetic monitoring of topsoil and street dust in Xinyang (China) and their environmental implications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The magnetic measurement is an effective tool to identify the source of pollutants and diagnose the urban pollution. In this study, 132 group samples (that topsoil and street dust were sampled at the same location is regarded as a group) were collected from Xinyang, central eastern China. In addition, the background samples (19 topsoils under woodland around the outskirts) were also sampled. Herein, the aim was to investigate and compare the magnetic characteristics of both topsoil and street dust, and further to discuss the source and environmental implications using magnetic and diffuse reflection spectrum methods. The following points are highlighted: (1) the primary magnetic carrier of both materials was magnetite and that of the background sample were magnetite and maghemite. Furthermore, the ferrimagnetic mineral concentration and magnetic domain follow the order: street dust > topsoil > background sample. (2) The source of both materials was mainly from anthropogenic activities (e.g. industrial and traffic vehicles). The difference between them was the contribution related to natural sources (e.g. parent materials), which was negligible in street dust, and played a secondary role in topsoil. (3) Both materials showed that areas with a higher intensity of anthropogenic activities had higher pollution level, whereas areas with a lower anthropogenic intensity had lower pollution level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abbasi, S., Keshavarzi, B., Moore, F., Hopke, P. K., Kelly, F. J., & Dominguez, A. O. (2020). Elemental and magnetic analyses, source identification, and oxidative potential of airborne, passive, and street dust particles in Asaluyeh County. Iran. Science of the Total Environment, 707, 136132. https://doi.org/10.1016/j.scitotenv.2019.136132

    Article  CAS  Google Scholar 

  • Balsam, W., Ji, J., & Chen, J. (2004). Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth Planetary Science Letters, 223(3–4), 335–348.

    Article  CAS  Google Scholar 

  • Bloemendal, J., Barton, C., & Radhakrishnamurthy, C. (1985). Correlation between Rayleigh loops and frequency-dependent and quadrature susceptibility: Application to magnetic granulometry of rocks. Journal Geophysical Research, 90(B10), 8789–8792.

    Article  Google Scholar 

  • Boyko, T., Scholger, R., Stanjek, H., Team, M. (2004). Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: Repeatability of in situ measurements. Journal of Applied Geophysics, 55(3–4), 249–259.

    Google Scholar 

  • Cao, L., Appel, E., Hu, S., Yin, G., Lin, H., & Rösler, W. (2015). Magnetic response to air pollution recorded by soil and dust-loaded leaves in a changing industrial environment. Atmospheric Environment, 119, 304–313.

    Article  CAS  Google Scholar 

  • Castaneda-Miranda, A. G., Böhnel, H. N., Molina-Garza, R. S., & Chaparro, M. A. (2014). Magnetic evaluation of TSP-filters for air quality monitoring. Atmospheric Environment, 96, 163–174.

    Article  CAS  Google Scholar 

  • Castaneda-Miranda, A. G., Chaparro, M. A., Pacheco-Castro, A., Chaparro, M. A., Böhnel, H. N. (2020). Magnetic biomonitoring of atmospheric dust using tree leaves of Ficus benjamina in Querétaro (México) Environmental Monitoring and Assessment, 192https://doi.org/10.1007/s10661-020-8238-x

  • Channell, J., & Hawthorne, T. (1990). Progressive dissolution of titanomagnetites at ODP Site 653 (Tyrrhenian Sea). Earth Planetary Science Letters, 96(3–4), 469–480.

    Article  CAS  Google Scholar 

  • Chen, X., Lu, X., & Yang, G. (2012). Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ring road, NW China using multivariate statistical methods. CATENA, 98, 73–78.

    Article  CAS  Google Scholar 

  • Dearing, J. A., Bird, P. M., Dann, R. J. L., & Benjamin, S. F. (1997). Secondary ferrimagnetic minerals in Welsh soils: A comparison of mineral magnetic detection methods and implications for mineral formation. Geophysical Journal International, 130(3), 727–736.

    Article  Google Scholar 

  • Deaton, B. C., & Balsam, W. L. (1991). Visible spectroscopy-a rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Research, 61(4), 628–632.

    Article  CAS  Google Scholar 

  • Declercq, Y., Samson, R., Castanheiro, A., Spassov, S., Tack, F. M., Van De Vijver, E., & De Smedt, P. (2019). Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. Science of the Total Environment, 685, 345–356.

    Article  CAS  Google Scholar 

  • Declercq, Y., Samson, R., Vijver Van De, E., Grave De, J., Tack, F., & Smedt De, P. (2020). A multi-proxy magnetic approach for monitoring large-scale airborne pollution impact. Science of the Total Environment, 734. https://doi.org/10.1016/j.scitotenv.2020.140718

  • Deng, C., Shaw, J., Liu, Q., Pan, Y., & Zhu, R. (2006). Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling. Earth and Planetary Science Letters, 241(1–2), 248–259.

    Article  CAS  Google Scholar 

  • Deng, C., Zhu, R., Jackson, M. J., Verosub, K. L., & Singer, M. J. (2001). Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator. Physics and Chemistry of the Earth, 26(11–12), 873–878.

    Article  Google Scholar 

  • Deng, C., Zhu, R., Verosub, K. L., Singer, M. J., & Vidic, N. J. (2004). Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research, 109. https://doi.org/10.1029/2003JB002532

  • Dunlop, D. J., & Özdemir, Ö. (1997). Rock magnetism: Fundamentals and frontiers. Cambridge University Press.

    Book  Google Scholar 

  • Dunlop, D. J., Xu, S., & Heider, F. (2004). Alternating field demagnetization, single-domain-like memory, and the Lowrie-Fuller test of multidomain magnetite grains (0.6–356 μm). Journal of Geophysical Research, 109. https://doi.org/10.1029/2004JB003006

  • Dytłow, S., Winkler, A., Górka-Kostrubiec, B., & Sagnotti, L. (2019). Magnetic, geochemical and granulometric properties of street dust from Warsaw (Poland). Journal of Applied Geophysics, 169, 58–73.

    Article  Google Scholar 

  • Evans, M., & Heller, F. (1994). Magnetic enhancement and palaeoclimate: Study of a loess/palaeosol couplet across the Loess Plateau of China. Geophysical Journal International, 117(1), 257–264.

    Article  Google Scholar 

  • Evans, M., & Rokosh, C. (2000). The last interglacial in the Chinese Loess Plateau: A petromagnetic investigation of samples from a north–south transect. Quaternary International, 68, 77–82.

    Article  Google Scholar 

  • Fergusson, J. E., & Kim, N. D. (1991). Trace elements in street and house dusts: Sources and speciation. Science of the Total Environment, 100, 125–150.

    Article  CAS  Google Scholar 

  • Florindo, F., Zhu, R., Guo, B., Yue, L., Pan, Y., & Speranza, F. (1999). Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. Journal of Geophysical Research, 104(B1), 645–659.

    Article  Google Scholar 

  • Gong, P., Liang, S., Carlton, E. J., Jiang, Q., Wu, J., Wang, L., & Remais, J. V. (2012). Urbanisation and health in China. Lancet, 379(9818), 843–852.

    Article  Google Scholar 

  • Hanesch, M., & Scholger, R. (2002). Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42(8), 857–870.

    Article  CAS  Google Scholar 

  • Hansard, R., Maher, B. A., & Kinnersley, R. P. (2012). Rapid magnetic biomonitoring and differentiation of atmospheric particulate pollutants at the roadside and around two major industrial sites in the U.K. Environmental Science & Technology, 46(8), 4403–4410.

  • Heller, F., Strzyszcz, Z., & Magiera, T. (1998). Magnetic record of industrial pollution in forest soils of Upper Silesia. Poland. Journal of Geophysical Research, 103(B8), 17767–17774.

    Article  CAS  Google Scholar 

  • Hoffmann, V., Knab, M., & Appel, E. (1999). Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration, 66(1–2), 313–326.

    Article  CAS  Google Scholar 

  • Hu, P., Liu, Q., Torrent, J., Barrón, V., & Jin, C. (2013). Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth and Planetary Science Letters, 369, 271–283.

    Article  CAS  Google Scholar 

  • Hunt, A., Jones, J., & Oldfield, F. (1984). Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Science of the Total Environment, 33(1–4), 129–139.

    Article  CAS  Google Scholar 

  • Hussain, K., Rahman, M., Prakash, A., & Hoque, R. R. (2015). Street dust bound PAHs, carbon and heavy metals in Guwahati city–Seasonality, toxicity and sources. Sustainable Cities and Society, 19, 17–25.

    Article  Google Scholar 

  • Ji, J., Balsam, W., Chen, J. U., & Liu, L. (2002). Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals, 50(2), 208–216.

    Article  CAS  Google Scholar 

  • Kapička, A., Petrovský, E., Ustjak, S., & Macháčková, K. (1999). Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in the Czech Republic. Journal of Geochemical Exploration, 66, 291–297.

    Article  Google Scholar 

  • Kim, W., Doh, S. J., & Yu, Y. (2009). Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmospheric Environment, 43(19), 3137–3144.

    Article  CAS  Google Scholar 

  • King, J., Banerjee, S. K., Marvin, J., & Özdemir, Ö. (1982). A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth and Planetary Science Letters, 59(2), 404–419.

    Article  Google Scholar 

  • Liu, D., Ma, J., Sun, Y., & Li, Y. (2016). Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China. CATENA, 139, 53–60.

    Article  CAS  Google Scholar 

  • Liu, H., Yan, Y., Chang, H., Chen, H., Liang, L., Liu, X., Qiang, X., & Sun, Y. (2019). Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmospheric Chemistry and Physics, 19(2), 731–745.

    Article  CAS  Google Scholar 

  • Liu, Q., Banerjee, S. K., Jackson, M. J., Zhu, R., & Pan, Y. (2002). A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophysical Research Letters, 29. https://doi.org/10.1029/2002GL014699

  • Liu, Q., Deng, C., Yu, Y., Torrent, J., Jackson, M. J., Banerjee, S. K., & Zhu, R. (2005). Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161(1), 102–112.

    Article  CAS  Google Scholar 

  • Liu, Q., Jackson, M. J., Banerjee, S. K., Maher, B. A., Deng, C., Pan, Y., & Zhu, R. (2004) Mechanism of the magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research, 109. https://doi.org/10.1029/2004JB003249

  • Liu, X., Shaw, J., Liu, T., Heller, F., & Yuan, B. (1992). Magnetic mineralogy of Chinese loess and its significance. Geophysical Journal International, 108, 301–308.

    Article  Google Scholar 

  • Lu, S., & Bai, S. (2008). Magnetic characterization and magnetic mineralogy of the Hangzhou urban soils and its environmental implications. Chinese Journal of Geophysics, 51(3), 762–769. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Lu, S., Wang, H., & Bai, S. (2009). Heavy metal contents and magnetic susceptibility of soils along an urban–rural gradient in rapidly growing city of eastern China. Environmental Monitoring and Assessment, 155(1), 91–101.

    Article  CAS  Google Scholar 

  • Lu, S., Yu, X., & Chen, Y. (2016). Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: Their source identification and environmental implications. Science of the Total Environment, 543, 239–247.

    Article  CAS  Google Scholar 

  • Ma, M., Hu, S., Wang, L., & Appel, E. (2016). The distribution process of traffic contamination on roadside surface and the influence of meteorological conditions revealed by magnetic monitoring. Environmental Monitoring and Assessment, 18(12), 161–172.

    Google Scholar 

  • Magiera, T., Strzyszcz, Z., Kapicka, A., & Petrovsky, E. (2006). Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130(3–4), 299–311.

    Article  Google Scholar 

  • Maher, B. A., Moore, C., & Matzka, J. (2008). Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric Environment, 42(2), 364–373.

    Article  CAS  Google Scholar 

  • Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., & Balkanski, Y. (2010). Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews, 99(1–2), 61–97.

    Article  CAS  Google Scholar 

  • Meng, X., Derbyshire, E., & Kemp, R. (1997). Origin of the magnetic susceptibility signal in Chinese loess. Quaternary Science Reviews, 16(8), 833–839.

    Article  Google Scholar 

  • Moreno, E., Sagnotti, L., Dinarès-Turell, J., Winkler, A., & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment, 37(21), 2967–2977.

    Article  CAS  Google Scholar 

  • Muxworthy, A. R., Matzka, J. U., & Petersen, N. (2001). Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data. Atmospheric Environment, 35(26), 4379–4386.

    Article  CAS  Google Scholar 

  • Nie, J., King, J. W., & Fang, X. (2007). Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophysical Research Letters, 34. https://doi.org/10.1029/2007GL031430

  • Oches, E. A., & Banerjee, S. K. (1996). Rock magnetic proxies of Climate change from loess-paleosol sediments in Czech Republic. Studia Geophysica Et Geodaetica, 40(3), 287–300.

    Article  Google Scholar 

  • Petrovský, E., Kapička, A., Jordanova, N., & Borůvka, L. (2001). Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. Journal of Applied Geophysics, 48, 127–136.

    Article  Google Scholar 

  • Petrovský, E., Kapička, A., Jordanova, N., Knab, M., & Hoffmann, V. (2000). Low-field magnetic susceptibility: A proxy method of estimating increased pollution of different environmental systems. Environmental Geology, 39(3–4), 312–318.

    Google Scholar 

  • Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.

    Article  Google Scholar 

  • Qiao, Q., Zhang, C., Huang, B., & Piper, J. D. (2011). Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: Magnetic monitoring of street dust in Beijing Olympic Park. Geophysical Journal International, 187(3), 1222–1236.

    Article  CAS  Google Scholar 

  • Roberts, A. P., Cui, Y., & Verosub, K. L. (1995). Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research, 100(B9), 17909–17924.

    Article  Google Scholar 

  • Rose, A. W., & Bianchi-Mosquera, G. C. (1993). Adsorption of Cu, Pb, Zn Co, Ni, and Ag on goethite and hematite: A control on metal mobilization from red beds into stratiform copper deposits. Economic Geology, 88(5), 1226–1236.

    Article  CAS  Google Scholar 

  • Salo, H., Bućko, M. S., Vaahtovuo, E., Limo, J., Mäkinen, J., & Pesonen, L. J. (2012). Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 69–81.

    Article  CAS  Google Scholar 

  • Scheinost, A., Chavernas, A., Barrón, V., & Torrent, J. (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46(5), 528–536.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain. India. Water Air and Soil Pollution, 141(1), 35–54.

    Article  CAS  Google Scholar 

  • Tauxe, L., Mullender, T. A. T., & Pick, T. (1996). Pothellies, wasp-waists, and superpara magnetism in the magnetic hysteresis. Journal of Geophysical Research, 101(B1), 571–583.

    Article  Google Scholar 

  • Thompson, R., & Oldfield, F. (1986). Environmental magnetism. George Allen and Unwin.

    Book  Google Scholar 

  • Wang, B., Xia, D., Yu, Y., Jia, J., & Xu, S. (2013). Magnetic records of heavy metal pollution in urban topsoil in Lanzhou. China. Chinese Science Bulletin, 58(3), 384–395.

    Article  CAS  Google Scholar 

  • Wang, B., Xia, D., Yu, Y., Jia, J., & Xu, S. (2014). Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environmental Pollution, 184, 335–346.

    Article  CAS  Google Scholar 

  • Wang, G., Chen, J., Zhang, W., Chen, Y., Ren, F., Fang, A., & Ma, L. (2019a). Relationship between magnetic properties and heavy metal contamination of street dust samples from Shanghai. China. Environmental Science and Pollution Research, 26(9), 8958–8970.

    Article  CAS  Google Scholar 

  • Wang, G., Chen, J., Zhang, W., Ren, F., Chen, Y., Fang, A., & Ma, L. (2019b). Magnetic properties of street dust in Shanghai, China and its relationship to anthropogenic activities. Environmental Pollution, 255. https://doi.org/10.1016/j.envpol.2019.113214

  • Wang, L., Hu, S., Ma, M., Zhang, Y., Wang, X., Wang, Q., Zhang, Z., Cui, B., & Liu, X. (2019c). Magnetic characteristics of atmospheric dustfall in a subtropical monsoon climate zone of China and its environmental implications: A case study of Nanjing. Atmospheric Environment, 212, 231–238.

    Article  CAS  Google Scholar 

  • Wang, L., Liu, T. S., & Lü, H. Y. (2000). Magnetic susceptibility properties of polluted soils. Chinese Science Bulletin, 45(10), 1091–1094.

    Article  Google Scholar 

  • Xia, D. S., Yu, Y., Ma, J. Y., Wang, G., Yang, L. P., Jin, M., Liu, X. M., & Chen, F. H. (2007). Magnetic characteristics of street dust in Lanzhou and its environmental significance. Environmental Science, 28(5), 937–944. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Xia, D., Chen, F., Bloemendal, J., Liu, X., Yu, Y., & Yang, L. (2008). Magnetic properties of urban dustfall in Lanzhou, China, and its environmental implications. Atmospheric Environment, 42(2), 2198–2207.

    Article  CAS  Google Scholar 

  • Xinyang Statistics Bureau. (2018). Xinyang statistical yearbook statistical. China statistics Press.

    Google Scholar 

  • Yin, Q., & Guo, Z. (2008). Strong summer monsoon during the cool MIS-13. Climate of the past, 4(1), 29–34.

    Article  Google Scholar 

  • Zhang, C., Liu, Q., Huang, B., & Su, Y. (2010). Magnetic enhancement upon heating of environmentally polluted samples containing haematite and iron. Geophysical Journal International, 181(3), 1381–1394.

    CAS  Google Scholar 

  • Zhang, C., Qiao, Q., Appel, E., & Huang, B. (2012). Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. Journal of Geochemical Exploration, 119, 60–75.

    Article  CAS  Google Scholar 

  • Zhang, C., Qiao, Q., Piper, J. D., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057–3070.

    Article  CAS  Google Scholar 

  • Zhao, G., Han, Y., Liu, X., Chang, L., Lü, B., Chen, Q., Guo, X., Yan, J., & Yan, J. (2016). Can the magnetic susceptibility record of Chinese Red Clay sequence be used for palaeomonsoon reconstructions? Geophysical Journal International, 204(3), 1421–1429.

    Article  Google Scholar 

  • Zhao, G., Han, Y., Yan, J., Jiang, L., & Xiang, M. (2015). Studies on the characteristic of four seasons variation in Xinyang City. Journal of Xinyang Normal University Natural Science Edition, 28(4), 529–532. (in Chinese).

    Google Scholar 

  • Zhao, G., Liu, X., Chen, Q., Lü, B., Chang, L., Niu, H., Li, P., Guo, H., & Liu, Z. (2013). A long-term increasing aridification and cooling trend at the Chinese Loess Plateau during the Pliocene. Quaternary International, 306, 121–128.

    Article  Google Scholar 

  • Zhao, G., Zhang, R., Han, Y., Lü, B., Meng, Y., Wang, S., & Wang, N. (2020). Identifying environmental pollution recorded in street dust using the magnetic method: A case study from central eastern China. Environmental Science and Pollution Research, 27(28), 34966–34977.

    Article  CAS  Google Scholar 

  • Zheng, Y., & Zhang, S. (2008). Magnetic properties of street dust and topsoil in Beijing and its environmental implications. Chinese Science Bulletin, 53(3), 408–417.

    Article  Google Scholar 

  • Zhou, L., Oldfield, F., Wintle, A. G., Robinson, S. G., & Wang, J. T. (1990). Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286), 737–739.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Chunlei Wang, Ronglei Zhang, and Zhenjin Li for the magnetic measurements.

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41877435 and 41602187), Funds for Key Young Teachers of XYNU (2018GGJS-04), and the Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection (STKF-201928), the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (No. SKLLQG2039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuming Liu or Guoyong Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, X., Zhao, G. et al. Magnetic monitoring of topsoil and street dust in Xinyang (China) and their environmental implications. Environ Monit Assess 193, 602 (2021). https://doi.org/10.1007/s10661-021-09407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09407-1

Keywords

Navigation