Skip to main content
Log in

Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rivers in Malaysia are classified based on water quality index (WQI) that comprises of six parameters, namely, ammoniacal nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended solids (SS). Due to its tropical climate, the impact of seasonal monsoons on river quality is significant, with the increased occurrence of extreme precipitation events; however, there has been little discussion on the application of artificial intelligence models for monsoonal river classification. In light of these, this study had applied artificial neural network (ANN) and support vector machine (SVM) models for monsoonal (dry and wet seasons) river classification using three of the water quality parameters to minimise the cost of river monitoring and associated errors in WQI computation. A structured trial-and-error approach was applied on input parameter selection and hyperparameter optimisation for both models. Accuracy, sensitivity, and precision were selected as the performance criteria. For dry season, BOD-DO-pH was selected as the optimum input combination by both ANN and SVM models, with testing accuracy of 88.7% and 82.1%, respectively. As for wet season, the optimum input combinations of ANN and SVM models were BOD-pH-SS and BOD-DO-pH with testing accuracy of 89.5% and 88.0%, respectively. As a result, both optimised ANN and SVM models have proven their prediction capacities for river classification, which may be deployed as effective and reliable tools in tropical regions. Notably, better learning and higher capacity of the ANN model for dataset characteristics extraction generated better predictability and generalisability than SVM model under imbalanced dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The raw data that support the findings of this study are obtained from the Department of Environment, Malaysia. Restrictions apply to the availability of these data, which were used under permission for this study. Data are available from the authors upon reasonable request and with the permission of Department of Environment, Malaysia.

References

  • Abobakr Yahya, A. S., Ahmed, A. N., Binti Othman, F., Ibrahim, R. K., Afan, H. A., El-Shafie, A., et al. (2019). Water quality prediction model based support vector machine model for ungauged river catchment under dual scenarios. Water, 11(6), 1231.

    Article  Google Scholar 

  • Afroz, R., Masud, M. M., Akhtar, R., & Duasa, J. B. (2014). Water pollution: Challenges and future direction for water resource management policies in Malaysia. Environment and Urbanization ASIA, 5(1), 63–81. https://doi.org/10.1177/0975425314521544

    Article  Google Scholar 

  • Al-Badaii, F., & Shuhaimi-Othman, M. (2014). The impact of anthropogenic pollution and urban runoff associated with spatial and seasonal variation on the water quality in the Semenyih River, Malaysia. World Applied Sciences Journal, 32, 1061–1073. https://doi.org/10.5829/idosi.wasj.2014.32.06.1846

    Article  CAS  Google Scholar 

  • Al-shargie, F., Tang, T. B., Badruddin, N., & Kiguchi, M. (2018). Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Medical & Biological Engineering & Computing, 56(1), 125–136. https://doi.org/10.1007/s11517-017-1733-8

    Article  Google Scholar 

  • Altenburger, R., Brack, W., Burgess, R. M., Busch, W., Escher, B. I., Focks, A., et al. (2019). Future water quality monitoring: Improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 31(1), 12. https://doi.org/10.1186/s12302-019-0193-1

    Article  Google Scholar 

  • Bisht, A. K., Singh, R., Bhutiani, R., & Bhatt, A.  (2017). Artificial neural network based predictionmodel forestimating the water quality of the river Ganga. In 2017 3rd International Conference on Advances in Computing,Communication & Automation (ICACCA) (Fall), 15–16 Sept. 2017 (pp. 1–5). https://doi.org/10.1109/ICACCAF.2017.8344735

  • Camara, M., Jamil, N. R. B., & Abdullah, F. B. (2020). Variations of water quality in the monitoring network of a tropical river. Global Journal of Environmental Science and Management, 6(1), 85–96. https://doi.org/10.22034/gjesm.2020.01.07

    Article  CAS  Google Scholar 

  • Campbell, I. C. (2016). Integrated management of large rivers and their basins. Ecohydrology & Hydrobiology, 16(4), 203–214.

    Article  Google Scholar 

  • Cheah, R., Billa, L., Chan, A., Teo, F. Y., Pradhan, B., & Alamri, A. M. (2019). Geospatial modelling of watershed peak flood discharge in Selangor Malaysia. Water, 11(12), 2490.

    Article  Google Scholar 

  • Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17), 5776.

    Article  CAS  Google Scholar 

  • Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., & Kløve, B. (2018). River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272–281. https://doi.org/10.1016/j.scitotenv.2017.09.293

    Article  CAS  Google Scholar 

  • Chouler, J., & Di Lorenzo, M. (2015). Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors, 5(3), 450–470. https://doi.org/10.3390/bios5030450

    Article  CAS  Google Scholar 

  • Cömert, Z., & Kocamaz, A. F. (2017). A study of artificial neural network training algorithms for classification of cardiotocography signals. Journal of Science and Technology, 7(2), 11.

    Google Scholar 

  • Department of Environment. (1985). Development of water quality criteria and standards for Malaysia. Malaysia.

  • Department of Environment. (2008). Interim National Water Quality Standards for Malaysia. Malaysia.

  • Department of Statistics. (2019). State Socioeconomic Report 2018.

  • Duan, W., Takara, K., He, B., Luo, P., Nover, D., & Yamashiki, Y. (2013). Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Science of the Total Environment, 461–462, 499–508. https://doi.org/10.1016/j.scitotenv.2013.05.022

    Article  CAS  Google Scholar 

  • Fölster, J., Johnson, R. K., Futter, M. N., & Wilander, A. (2014). The Swedish monitoring of surface waters: 50 years of adaptive monitoring. Ambio, 43(1), 3–18.

    Article  Google Scholar 

  • Fulazzaky, M. A. (2014). Challenges of integrated water resources management in Indonesia. Water, 6(7), 2000–2020.

    Article  Google Scholar 

  • Fulazzaky, M. A., Seong, T. W., & Masirin, M. I. M. (2009). Assessment of water quality status for the Selangor River in Malaysia. Water, Air, and Soil Pollution, 205(1), 63. https://doi.org/10.1007/s11270-009-0056-2

    Article  CAS  Google Scholar 

  • Gao, L., & li, D. . (2014). A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering, 1, 267. https://doi.org/10.15302/J-FASE-2014041

    Article  Google Scholar 

  • Gupta, D., & Richhariya, B. (2018). Entropy based fuzzy least squares twin support vector machine for class imbalance learning. Applied Intelligence, 48(11), 4212–4231.

    Article  Google Scholar 

  • Ha, N.-T., Nguyen, H. Q., Truong, N. C. Q., Le, T. L., Thai, V. N., & Pham, T. L. (2020). Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri An Reservoir Vietnam. Environmental Monitoring and Assessment, 192(12), 789. https://doi.org/10.1007/s10661-020-08731-2

    Article  CAS  Google Scholar 

  • Ho, J. Y., Afan, H. A., El-Shafie, A. H., Koting, S. B., Mohd, N. S., Jaafar, W. Z. B., et al. (2019). Towards a time and cost effective approach to water quality index class prediction. Journal of Hydrology, 575, 148–165. https://doi.org/10.1016/j.jhydrol.2019.05.016

    Article  CAS  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  • Ji, X., Dahlgren, R. A., & Zhang, M. (2016). Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems. Environmental Monitoring and Assessment, 188(1), 15.

    Article  Google Scholar 

  • Ji, X., Shang, X., Dahlgren, R. A., & Zhang, M. (2017). Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: A case study of Wen-Rui Tang River China. Environmental Science and Pollution Research, 24(19), 16062–16076. https://doi.org/10.1007/s11356-017-9243-7

    Article  CAS  Google Scholar 

  • Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S. M., Toriman, M. E., et al. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173(1), 625–641. https://doi.org/10.1007/s10661-010-1411-x

    Article  Google Scholar 

  • Kadam, A. K., Wagh, V. M., Muley, A. A., Umrikar, B. N., & Sankhua, R. N. (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin India. Modeling Earth Systems and Environment, 5(3), 951–962. https://doi.org/10.1007/s40808-019-00581-3

    Article  Google Scholar 

  • Kawasaki, N., Kushairi, M. R., Yusoff, F., Nagao, N., Imai, A., & Kohzu, A. (2016). Seasonal changes of nutrient distributions along Selangor River, Malaysia. International Journal of Advances in Chemical Engineering and Biological Sciences, 3(1), 4. https://doi.org/10.13140/RG.2.1.2225.1122

    Article  Google Scholar 

  • Kisi, O., & Parmar, K. S. (2016). Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. Journal of Hydrology, 534, 104–112. https://doi.org/10.1016/j.jhydrol.2015.12.014

    Article  CAS  Google Scholar 

  • Lima, A. R., Hsieh, W. W., & Cannon, A. J. (2017). Variable complexity online sequential extreme learning machine, with applications to streamflow prediction. Journal of Hydrology, 555, 983–994. https://doi.org/10.1016/j.jhydrol.2017.10.037

    Article  Google Scholar 

  • Liu, S., Xu, L., Li, Q., Zhao, X., & Li, D. (2018). Fault diagnosis of water quality monitoring devices based on multiclass support vector machines and rule-based decision trees. IEEE Access, 6, 22184–22195. https://doi.org/10.1109/ACCESS.2018.2800530

    Article  Google Scholar 

  • Lobo, E. A., Heinrich, C. G., Schuch, M., Wetzel, C. E., & Ector, L. (2016). Diatoms as bioindicators in rivers. In O. Necchi (Ed.), River Algae (pp. 245–271). Springer International Publishing.

    Chapter  Google Scholar 

  • Loucks, D. P., & van Beek, E. (2017). Water quality modeling and prediction. In D. P. Loucks & E. van Beek (Eds.), Water resource systems planning and management: An introduction to methods, models, and applications (pp. 417–467). Springer International Publishing.

    Chapter  Google Scholar 

  • Lourakis, M. I. A. (2005). A brief description of the Levenberg-Marquardt algorithm implemented by levmar.

  • Modaresi, F., & Araghinejad, S. (2014). A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water Resources Management, 28(12), 4095–4111. https://doi.org/10.1007/s11269-014-0730-z

    Article  Google Scholar 

  • Mondal, I., Bandyopadhyay, J., & Paul, A. K. (2016). Water quality modeling for seasonal fluctuation of Ichamati river West Bengal India. Modeling Earth Systems and Environment, 2(3), 113. https://doi.org/10.1007/s40808-016-0153-3

    Article  Google Scholar 

  • Moraes, R., Valiati, J. F., & Gavião Neto, W. P. (2013). Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Systems with Applications, 40(2), 621–633. https://doi.org/10.1016/j.eswa.2012.07.059

    Article  Google Scholar 

  • Mustafa, M. R., Rezaur, R. B., Saiedi, S., & Isa, M. H. (2012). River suspended sediment prediction using various multilayer perceptron neural network training algorithms—A case study in Malaysia. Water Resources Management, 26(7), 1879–1897. https://doi.org/10.1007/s11269-012-9992-5

    Article  Google Scholar 

  • Oh, S. G., & Kim, T. Y. (2020). Facial expression recognition by regional weighting with approximated Q-learning. Symmetry, 12(2), 319.

    Article  Google Scholar 

  • Olson, D. L., & Delen, D. (2008). Support vector machines. In Advanced data mining techniques (pp. 111–123). Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Olyaie, E., Banejad, H., Chau, K.-W., & Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environmental Monitoring and Assessment, 187(4), 189. https://doi.org/10.1007/s10661-015-4381-1

    Article  Google Scholar 

  • Othman, F., Chowdhury, M. S. U., Wan Jaafar, W. Z., Faresh, E. M. M., & Shirazi, S. M. (2018). Assessing risk and sources of heavy metals in a tropical river basin: A case study of the Selangor River Malaysia. Polish Journal of Environmental Studies, 27(4), 1659–1671. https://doi.org/10.15244/pjoes/76309

    Article  CAS  Google Scholar 

  • Oyebode, O., & Stretch, D. (2019). Neural network modeling of hydrological systems: A review of implementation techniques. Natural Resource Modeling, 32(1), e12189. https://doi.org/10.1111/nrm.12189

    Article  Google Scholar 

  • Palizdan, N., Falamarzi, Y., Huang, Y. F., Lee, T. S., & Ghazali, A. H. (2014). Regional precipitation trend analysis at the Langat River Basin Selangor Malaysia. Theoretical and Applied Climatology, 117(3), 589–606. https://doi.org/10.1007/s00704-013-1026-6

    Article  Google Scholar 

  • Peletz, R., Kisiangani, J., Bonham, M., Ronoh, P., Delaire, C., Kumpel, E., et al. (2018). Why do water quality monitoring programs succeed or fail? A qualitative comparative analysis of regulated testing systems in sub-Saharan Africa. International Journal of Hygiene and Environmental Health, 221(6), 907–920. https://doi.org/10.1016/j.ijheh.2018.05.010

    Article  Google Scholar 

  • Pitakwinai, P., Khanitchaidecha, W., & Nakaruk, A. (2019). Spatial and seasonal variation in surface water quality of Nan river, Thailand. Naresuan University Engineering Journal, 14, 1–10.

    Google Scholar 

  • Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144–153. https://doi.org/10.1016/j.knosys.2011.07.016

    Article  Google Scholar 

  • Richhariya, B., & Tanveer, M. (2020). A reduced universum twin support vector machine for class imbalance learning. Pattern Recognition, 107150.

  • Roushangar, K., & Shahnazi, S. (2020). Determination of influential parameters for prediction of total sediment loads in mountain rivers using kernel-based approaches. Journal of Mountain Science, 17(2), 480–491. https://doi.org/10.1007/s11629-018-5156-2

    Article  Google Scholar 

  • Sakai, N., Mohd Yusof, R., Sapar, M., Yoneda, M., & Ali Mohd, M. (2016). Spatial analysis and source profiling of beta-agonists and sulfonamides in Langat River basin, Malaysia. Science of the Total Environment, 548–549, 43–50. https://doi.org/10.1016/j.scitotenv.2016.01.040

    Article  CAS  Google Scholar 

  • Salkuti, S. R. (2018). Short-term electrical load forecasting using hybrid ANN–DE and wavelet transforms approach. Electrical Engineering, 100(4), 2755–2763. https://doi.org/10.1007/s00202-018-0743-3

    Article  Google Scholar 

  • Samat, A., Yokoya, N., Du, P., Liu, S., Ma, L., Ge, Y., et al. (2019). Direct ECOC ND and END frameworks—Which one is the best An empirical study of sentinel-2A MSIL1C image classification for arid-land vegetation mapping in the Ili River Delta Kazakhstan. Remote Sensing, 11(16), 1953.

    Article  Google Scholar 

  • Santhi, V. A., & Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185(2), 1541–1554. https://doi.org/10.1007/s10661-012-2649-2

    Article  CAS  Google Scholar 

  • Sari, V., dos Reis Castro, N. M., & Pedrollo, O. C. (2017). Estimate of suspended sediment concentration from monitored data of turbidity and water level using artificial neural networks. Water Resources Management, 31(15), 4909–4923. https://doi.org/10.1007/s11269-017-1785-4

    Article  Google Scholar 

  • Seyam, M., & Othman, F. (2015). Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theoretical and Applied Climatology, 121(1), 71–85. https://doi.org/10.1007/s00704-014-1225-9

    Article  Google Scholar 

  • Shil, S., Singh, U. K., & Mehta, P. (2019). Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9(7), 168. https://doi.org/10.1007/s13201-019-1045-2

    Article  CAS  Google Scholar 

  • Sim, S. F., & Tai, S. E. (2018) Assessment of a physicochemical indexing method for evaluation of tropical river water quality. Journal of Chemistry 12. https://doi.org/10.1155/2018/8385369

  • Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2015). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1), 58. https://doi.org/10.1007/s10661-015-5050-0

    Article  Google Scholar 

  • Ullah, H., & Bhuiyan, M. (2018). Performance evaluation of feed forward neural network for image classification. Journal of Science and Technology, 10(1), 9. https://doi.org/10.30880/jst.2018.10.01.004

    Article  Google Scholar 

  • Urso, A., Fiannaca, A., La Rosa, M., Ravì, V., & Rizzo, R. (2019). Data mining: Classification and prediction. In S. Ranganathan, M. Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology (pp. 384–402). Academic Press.

    Chapter  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag.

  • Walsh, P., & Wheeler, W. (2012). Water quality index aggregation and cost benefit analysis.

  • Wong, Y. J., Arumugasamy, S. K., & Jewaratnam, J. (2018). Performance comparison of feedforward neural network training algorithms in modeling for synthesis of polycaprolactone via biopolymerization. Clean Technologies Environmental Policy, 20(9), 1971–1986.

    Article  CAS  Google Scholar 

  • Wong, Y. J., Arumugasamy, S. K., & Mustapha, K. B. (2019). Development of a computational predictive model for the nonlinear in-plane compressive response of sandwich panels with bio-foam. Composite Structures, 212, 423–433. https://doi.org/10.1016/j.compstruct.2019.01.039

    Article  Google Scholar 

  • Wong, Y. J., Mustapha, K. B., Shimizu, Y., Kamiya, A., & Arumugasamy, S. K. (2021). Development of surrogate predictive models for the nonlinear elasto-plastic response of medium density fibreboard-based sandwich structures. International Journal of Lightweight Materials and Manufacture, 4(3), 302–314. https://doi.org/10.1016/j.ijlmm.2021.02.002

    Article  Google Scholar 

  • Wong, Y. J., Shimizu, Y., He, K., & Nik Sulaiman, N. M. (2020). Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin Malaysia. Environmental Monitoring and Assessment, 192(10), 644. https://doi.org/10.1007/s10661-020-08543-4

    Article  Google Scholar 

  • Yaseen, Z. M., Ramal, M. M., Diop, L., Jaafar, O., Demir, V., & Kisi, O. (2018). Hybrid adaptive neuro-fuzzy models for water quality index estimation. Water Resources Management, 32(7), 2227–2245. https://doi.org/10.1007/s11269-018-1915-7

    Article  Google Scholar 

  • Zainudin, Z. (2010). Benchmarking river water quality in Malaysia. IEM Jurutera, 12–15.

  • Zhang, H., Jin, G., & Yu, Y. (2018). Review of river basin water resource management in China. Water, 10(4), 425.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Malaysia’s DOE for permitting the use of the Selangor river basin water quality data for this research purpose. We thank the two anonymous reviewers and the associate editor Prof. Andrew S. Hursthouse for their constructive comments which helped to improve the paper significantly.

Author information

Authors and Affiliations

Authors

Contributions

Yong Jie Wong: conceptualization, methodology, formal Analysis, data curation, software, writing—original draft preparation; Yoshihisa Shimizu: conceptualization, methodology, supervision, writing—review and editing; Akinori Kamiya: conceptualization, formal analysis, software, writing—original draft preparation; Luksanaree Maneechot: software, formal analysis, writing—review and editing; Khagendra Bharambe: software, validation, writing—review and editing; Chng Saun Fong: conceptualization, methodology, writing—review and editing; Nik Meriam Nik Sulaiman: data curation, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Yong Jie Wong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, Y.J., Shimizu, Y., Kamiya, A. et al. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environ Monit Assess 193, 438 (2021). https://doi.org/10.1007/s10661-021-09202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09202-y

Keywords

Navigation