Skip to main content

Advertisement

Log in

The removal of PM2.5 by trees in tropical Andean metropolitan areas: an assessment of environmental change scenarios

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metropolitan areas in Andean industrialized valleys with a strong geomorphological structure and a pronounced climate experience an increasing degradation of air quality, which motivates environmental policies that include the expansion of tree coverage in urban areas among the mitigation measures. Using the metropolitan area of the Aburrá Valley, Colombia, as a study case, we evaluate the removal of PM2.5 by urban trees with the Urban Forest Effects (UFORE) methodology, considering the potential effect of changing tree covers in the valley for several projected meteorological conditions under climate change and different urban management practices. The estimated removals are sensitive to the number and distribution of available ground stations, with a tendency to overestimate with fewer stations. We found that the marginal gains in removal by additional tree plantings are low in the urbanized settings. In the environmental scenarios, the main limiting factor in the removal is precipitation, compared to changes in tree cover and levels of pollution. Spatially, the increase in total removal depends on the increase in tree cover, with more benefits obtained when trees are in areas with high concentrations of PM2.5. Trees with low values of leaf area index (LAI) seem to optimize the effectiveness of the removal. Seasonally, the greatest removal occurs in rainy months when pollution levels are the highest. Based on our results, the scenarios that meet the plans and programs aimed at improving air quality would achieve removal effectiveness of around 2.5% of the total emissions of PM2.5 with urban trees. Air quality would achieve removal effectiveness of around 2.5% of the total emissions of PM2.5 with urban trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data available upon request.

Code availability (software application or custom code)

Code available upon request.

References 

  • Agudelo-Patiño, L. C., & Miralles-Garcia, J. L. (2015). Design and management of the metropolitan green belt of Aburrá Valley, Colombia. WIT Transactions on Ecology and the Environment, 194, 193–203. https://doi.org/10.2495/SC150181

    Article  Google Scholar 

  • Aguiar-Gil, D., Gómez-Peláez, L. M., Álvarez-Jaramillo, T., Correa-Ochoa, M. A., & Saldarriaga-Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 224 (June 2019). https://doi.org/10.1016/j.atmosenv.2020.117343

  • Alcalá, J., Sosa, M., Moreno, M., Quintana, C., Campos, A., & Holguin, C. (2008). Retención de polvo atmosférico en especies arbóreas indicadoras de la planeación urbana sustentable: ciudad de Chihuahua, México. Multequina, 17(1), 17–28. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-73292008000100001

  • Alcaldía de Medellín. (2018a). Calidad del Aire de Medellín. Retrieved from www.medellin.gov.co

  • Alcaldía de Medellín, AMVA (Área Metropolitana Valle de Aburrá), & urbam (Centro de Estudios Ambientales - Universidad EAFIT). (2011). Bio 2030 - Plan Director Medellín, Valle de Aburrá. (Mesa Editores, Ed.) (Primera ed).

  • Alcaldía de Medellín. (2018b). Sistema de Árbol Urbano—SAU. https://www.medellin.gov.co/sau/

  • AMVA. (2019a). Calidad del Aire. Retrieved from www.metropol.gov.co

  • AMVA. (2019b). Inventario de Emisiones Atmosféricas: evaluación y monitoreo de la calidad del aire en el Valle de Aburrá. Retrieved feb, 17, 2020 from https://www.metropol.gov.co/ambiental/calidad-del-aire/Paginas/Herramientas-de-gestion/Inventario-de-emisiones-atmosfericas.aspx

  • AMVA. (2018a). Plan de Siembra Aburrá. Retrieved from https://www.metropol.gov.co/ambientales/flora/plan-siembra-aburr%C3%A1

  • AMVA. (2018b). Plan Integral PIGECA: Plan Integral de Gestión de la Calidad del Aire del Valle de Aburrá. Retrieved from www.metropol.gov.co

  • Arantes, B. L., & Mauad, T. (2019). Urban forests, air quality and health: a systematic review. International Forestry Review, 21(2), 167–181.

  • Arroyave Maya, M. D. P., Posada Posada, M. I., Nowak, D. J., & Hoehn, R. E. (2019). Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colombia Forestal, 22(1), 5–16. https://doi.org/10.14483/2256201X.13695

  • Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over Medellin’s Valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May). https://doi.org/10.3389/feart.2019.00092

  • Bottalico, F., Travaglini, D., Chirici, G., Garfì, V., Giannetti, F., De Marco, A., & Sanesi, G. (2017). A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban Forestry & Urban Greening, 27, 221–234. https://doi.org/10.1016/j.ufug.2017.08.013

    Article  Google Scholar 

  • Bonan, G. (2016). Ecological climatology. https://doi.org/10.1017/CBO9781107339200

    Article  Google Scholar 

  • Cabaraban, M. T. I., Kroll, C. N., Hirabayashi, S., & Nowak, D. J. (2013). Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system. Environmental Pollution, 176, 123–133. https://doi.org/10.1016/j.envpol.2013.01.006

    Article  CAS  Google Scholar 

  • Cherin, N., Roustan, Y., Musson-Genon, L., & Seigneur, C. (2015). Modelling atmospheric dry deposition in urban areas using an urban canopy approach. Geoscientific Model Development, 8(3), 893–910. https://doi.org/10.5194/gmd-8-893-2015

    Article  Google Scholar 

  • Corada, K., Woodward, H., Alaraj, H., Collins, C. M., de Nazelle, A. (2021). A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environmental Pollution, 269, 116104. https://doi.org/10.1016/j.envpol.2020.116104

  • Crosman, E. T., & Horel, J. D. (2017). Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmospheric Research, 193(March), 10–25. https://doi.org/10.1016/j.atmosres.2017.04.010

    Article  Google Scholar 

  • DANE. (2019). Departamento Administrativo Nacional de Estadística—DANE. Retrieved from https://www.dane.gov.co/

  • Franco, J. F., Gidhagen, L., Morales, R., & Behrentz, E. (2019). Towards a better understanding of urban air quality management capabilities in Latin America. Environmental Science & Policy, 102, 43–53.

    Article  Google Scholar 

  • Henao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31(July 2019), 100542. https://doi.org/10.1016/j.uclim.2019.100542

  • Herrera, L. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá a partir de la información de sensores remotos y radiosondeos. Universidad Nacional de Colombia. Recuperado de http://www.bdigital.unal.edu.co/51042/1/1128283242.2015.pdf

  • Hirabayashi, S., Kroll, C. N., & Nowak, D. J. (2015). Urban forest effects-dry deposition (UFORE-D) model descriptions.

  • Huang, Y., Lei, C., Liu, C. H., Perez, P., Forehead, H., Kong, S., Zhou, J. L. (2021). A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution, 280, 116971. https://doi.org/10.1016/j.envpol.2021.116971

  • Janhäll, S. (2015). Review on urban vegetation and particle air pollution—deposition and dispersion. Atmospheric Environment. Pergamon. https://doi.org/10.1016/j.atmosenv.2015.01.052

  • Jeanjean, A. P. R., Buccolieri, R., Eddy, J., Monks, P. S., & Leigh, R. J. (2017). Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban Forestry & Urban Greening, 22, 41–53. https://doi.org/10.1016/j.ufug.2017.01.009

    Article  Google Scholar 

  • Jorquera, H., Montoya, L. D., & Rojas, N. Y. (2019). Urban air pollution. In Urban climates in Latin America (pp. 137–165). Springer, Cham.

  • Khedairia, S., & Khadir, M. T. (2012). Impact of clustered meteorological parameters on air pollutants concentrations in the region of Annaba, Algeria. Atmospheric Research, 113, 89–101. https://doi.org/10.1016/j.atmosres.2012.05.002

    Article  CAS  Google Scholar 

  • Kricher, J. (2011). Tropical Ecology. Princeton University Press.

    Google Scholar 

  • Lin, J., Kroll, C. N., Nowak, D. J., & Greenfield, E. J. (2019). A review of urban forest modeling: implications for management and future research. Urban Forestry & Urban Greening, 43, 126366.

  • Luo, X., Jiang, P., Yang, J., Jin, J., & Yang, J. (2021). Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework. Ecosystem Services, 47(August 2020), 101234. https://doi.org/10.1016/j.ecoser.2020.101234

  • Malizia, A., Blundo, C., Carilla, J., Osinaga Acosta, O., Cuesta, F., Duque, A., et al. (2020). Elevation and latitude drive structure and tree species composition in Andean forests: Results from a large-scale plot network. PLoS One, 15(4), e0231553. https://doi.org/10.1371/journal.pone.0231553

    Article  CAS  Google Scholar 

  • Mora G, D. Y., Ulises Jiménez, J., & Fábrega, J. (2014). Relación entre el Índice de Área Foliar y el Índice Normalizado de Vegetación en el Bosque Húmedo Tropical de Panamá, en Gamboa. Revista de I+D Tecnológico, 10(1), 28–40. 978-9962-8984-1-2

  • Morani, A., Nowak, D. J., Hirabayashi, S., & Calfapietra, C. (2011). How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environmental Pollution, 159(5), 1040–1047. https://doi.org/10.1016/j.envpol.2010.11.022

    Article  CAS  Google Scholar 

  • Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., & Li, J. (2018). Characteristics of air pollution in different zones of Sichuan Basin, China. Science of the Total Environment, 612, 975–984. https://doi.org/10.1016/j.scitotenv.2017.08.205

    Article  CAS  Google Scholar 

  • Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environmental Pollution, 178, 395–402. https://doi.org/10.1016/j.envpol.2013.03.050

    Article  CAS  Google Scholar 

  • Proantioquia, El Colombiano, Universidad Eafit, Cámara de Comercio de Medellín para Antioquia, Comfama, Comfenalco, Casa Editorial El Tiempo, la Cámara de Comercio de Bogotá, F. C. -Medellín Cómo Vamos- (2018). Memorias Mesa de trabajo sobre calidad del aire en el Valle de Aburrá: El reto de fortalecer la gobernanza del aire. Medellín.

  • Rendón, A. M., Salazar, J. F., Wirth, V., & Quintero, O. L. (2015). Mechanisms of air pollution transport in urban valleys. CMAS South America, 2–4.

  • Rendón, A., Wirth, V., Salazar, J. F., Palacio, C. A., & Brötz, B. (2014). Mechanisms of air pollution transport in urban valleys as a result of the interplay between the temperature inversion and the urban heat island effect. En: AGU Fall Meeting Abstracts.

  • Roldán-Henao, N., Hoyos, C. D., Herrera-Mejía, L., & Isaza, A. (2020). An investigation of the precipitation net effect on the particulate matter concentration in a narrow valley: Role of lower-troposphere stability. J. Appl. Meteor. Climatol., 59, 401–426. https://doi.org/10.1175/JAMC-D-18-0313.1

    Article  Google Scholar 

  • Rogers, K., Sacre, K., Goodenough, J., & Kieron Doick. (2015). Valuing London’s urban forest. London. Retrieved from https://www.itreetools.org/resources/reports/Valuing_Londons_Urban_Forest.pdf

  • Riondato, E., Pilla, F., Basu, A. S., & Basu, B. (2020). Investigating the effect of trees on urban quality in Dublin by combining air monitoring with i-Tree Eco model. Sustainable Cities and Society, 102356.

  • Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., & Nowak, D. (2016). Air pollution removal by trees in public green spaces in Strasbourg city. France. Urban Forestry & Urban Greening, 17, 192–201. https://doi.org/10.1016/j.ufug.2016.04.010

  • SIATA. (2019). Sistema de Alerta Temprana del valle de Aburrá. Disponible en: https://siata.gov.co/siata_nuevo/

  • Taborda, E. (2017). Efectoherrs de la colección de árboles de la Universidad de Antioquia en la calidad del aire del campus. Universidad de Antioquia. Retrieved from http://portal.udea.edu.co/wps/portal/udea/

  • Tallis, M., Taylor, G., Sinnett, D., & Freer-Smith, P. (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103(2), 129–138. https://doi.org/10.1016/j.landurbplan.2011.07.003

    Article  Google Scholar 

  • Terzaghi, E., Wild, E., Zacchello, G., Cerabolini, B. E. L., Jones, K. C., & Di Guardo, A. (2013). Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 74, 378–384. https://doi.org/10.1016/j.atmosenv.2013.04.013

    Article  CAS  Google Scholar 

  • UNAL. (2011). Medellín: ahogada por el fenómeno de la inversión térmica. Tomado de: https://agenciadenoticias.unal.edu.co/

  • Wu, J., Wang, Y., Qiu, S., & Peng, J. (2019). Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of the Total Environment, 688, 673–683. https://doi.org/10.1016/j.scitotenv.2019.05.437

    Article  CAS  Google Scholar 

  • Yli-Pelkonen, V., Setälä, H., & Viippola, V. (2017). Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landscape and Urban Planning, 158, 39–47. https://doi.org/10.1016/j.landurbplan.2016.09.014

    Article  Google Scholar 

  • Zhang, R., Chen, G., Yin, Z., Zhang, Y., & Ma, K. (2021). Urban greening based on the supply and demand of atmospheric PM2.5 removal. Ecological Indicators, 126, 107696. https://doi.org/10.1016/j.ecolind.2021.107696

  • Wania, A., Bruse, M., Blond, N., Weber, C. (2012) Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of Environmental Management 94 (1):91-101. https://doi.org/10.1016/j.jenvman.2011.06.036

Download references

Acknowledgements

We thank SIATA for providing the air quality and meteorology data and the Environment Secretary of Medellin for providing the SAU database.

Funding

Partial funding for this study came from the academic stimulus Estudiante Instructor, awarded to the first author by Universidad de Antioquia in her Master in Environmental Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Daniela Velásquez Ciro: gathered data, wrote code, run simulations, analyzed results, and wrote paper; Julio Cañón: advised general development of research, analyzed results, and wrote paper; Isabel Hoyos Rincón: advised general development of simulations, analyzed results, and wrote paper.

Corresponding author

Correspondence to Daniela Velásquez Ciro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velásquez Ciro, D., Cañón Barriga, J.E. & Hoyos Rincón, I.C. The removal of PM2.5 by trees in tropical Andean metropolitan areas: an assessment of environmental change scenarios. Environ Monit Assess 193, 396 (2021). https://doi.org/10.1007/s10661-021-09171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09171-2

Keywords

Navigation