Skip to main content

Advertisement

Log in

Physicochemical and metal composition of rainfall in the Johannesburg region, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The change in the water quality of rainfall impacts water supply through the contamination of surface water and groundwater. The presence of potential sources for metals in the form of aerosol through atmospheric transportation from gold tailings dams, coal mines, and coal-fired power stations increases the risk of water quality deterioration in the Johannesburg region. Rainfall monitoring was conducted for one hydrological year. Rainfall amount was measured, and samples were collected for stable isotope and metal analysis. Some metals show very high concentration in the rainfall with a decreasing order from zinc, cadmium, copper to lead. Their presence in the water is not desirable, as a result of favourable pH and Eh conditions in the rainfall with contaminant inputs from the gold tailing dams, coal mines, and coal-fired power stations. Therefore, the Johannesburg rainfall can be considered as potentially toxic due to the constant input of meals into water supply dams and aquifers recharged by the rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

There is one table included in the text. There are no other associated data used in the manuscript.

References

  • Abiye, T. A., Demlie, M. B., & Mengistu, H. (2021). An overview of aquifer physiognomies and the δ18O and δ2H distribution in the South African groundwaters. Hydrology, 8, 68. https://doi.org/10.3390/hydrology8020068

    Article  Google Scholar 

  • Abiye, T. A. (2016). Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users. Groundwater for Sustainable Development, 2(2016), 182–189. https://doi.org/10.1016/j.gsd.2016.10.002

    Article  Google Scholar 

  • Abiye, T. A. (2014). Mine water footprint in the Johannesburg area: A review based on existing and measured data. South African Journal of Geology, 117(1), 87–96.

    Article  CAS  Google Scholar 

  • Abiye, T. A., Mkansi, S., Masindi, K., & Leshomo, J. (2018). Effectiveness of wetlands in retaining metals From mine water South Africa. Water and Environment Journal, 32(2), 259–266. https://doi.org/10.1111/wej.12323

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A. (2009). Chemical characteristics of rainwater collected at a western site of Jordan. Atmospheric Research, 91, 53–61. https://doi.org/10.1016/j.atmosres.2008.05.007

    Article  CAS  Google Scholar 

  • Ashanti, A. (2004). Case studies. Woodlands Project – good progress being made with the phytoremediation project. Environment – AngloGold Ashanti Report to Society, 183–186.

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2012). Characterization of fly ash generated from Matla Power Station in Mpumalanga, South Africa. E-Journal of Chemistry 9(4), 1788–1795. http://www.ejchem.net

  • Balasubramanian, R., Victor, T., & Begum, R. (1999). Impact of biomass burning on rainwater acidity and composition in Singapore. Journal of Geophysical Research, 104(D21), 26881–26890.

    Article  CAS  Google Scholar 

  • Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., & Chazot, G. (2008). Rainfall chemistry: Long-range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60, 253–271.

    Article  CAS  Google Scholar 

  • Cape, J. N., Fowler, D., Kinnaird, J. W., Paterson, I. S., Leith, I. D., & Nicholson, I. A. (1984). Chemical composition of rainfall and wet deposition over Northern Britain. Atmospheric Environment, 18(9), 1921–1932.

    Article  CAS  Google Scholar 

  • Dinrifo, R. R., Babatunde, S. O. E., Bankole, Y. O., & Demu, Q. A. (2010). Physico-chemical properties of rain water collected from some industrial areas of Lagos State Nigeria. European Journal of Scientific Research, 41(3), 383–390.

    Google Scholar 

  • Dyson, L. L. (2009). Heavy daily-rainfall characteristics over the Gauteng Province. Water SA, 35(5), 627–638. https://doi.org/10.4314/wsa.v35i5.49188

    Article  Google Scholar 

  • Feather, C. E., Koen, G. M. (1975). The mineralogy of the Witwatersrand Reefs. Minerals Science and Engineering, 7:189–224.

  • Forti, M. C., Melfi, A. J., Astolfo, R., & Fostier, A. H. (2000). Rainfall chemistry composition in two ecosystems in the northeastern Brazilian Amazon (Amapá State). Journal of Geophysical Research, 105(D23), 28895–28905.

    Article  CAS  Google Scholar 

  • Gichuki, S. W., & Mason, R. P. (2013). Mercury and metals in South African precipitation. Atmospheric Environment, 79, 286–298.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1989) Study and interpretation of chemical characteristics of natural waters. 3rd Edition, US Geological Survey Water Supply Paper 2254.

  • Huang, X. F., Li, X., He, L. Y., Feng, N., Hu, M., Niu, Y. W., & Zeng, L. W. (2010). Year study of rainwater chemistry in a coastal mega-city in South China. Atmospheric Research, 97, 185–193. https://doi.org/10.1016/j.atmosres.2010.03.027

    Article  CAS  Google Scholar 

  • Junge, C. E. (1963). Air Chemistry and Radioactivity. New York (Academic Press). p382.

  • Keresztesi, Á., Nita, I. A., Boga, R., Birsan, M. V., Bodor, A., & Szép, R. (2020). Spatial and long-term analysis of rainwater chemistry over the conterminous United States. Environmental Research, 188, 109872. https://doi.org/10.1016/j.envres.2020.109872

    Article  CAS  Google Scholar 

  • Kolusu, S. R., Shamsudduha, M., Todd, M. C., Taylor, R. G., Seddon, D., Kashaigili, J. J., Ebrahim, G. Y., Cuthbert, M. O., Sorensen, J. P. R., Villholth, K. G., MacDonald, A. M., & MacLeod, D. A. (2019). The El Niño event of 2015–2016: Climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrology and Earth System Sciences, 23, 1751–1762. https://doi.org/10.5194/hess-23-1751-2019

    Article  Google Scholar 

  • Leketa, K. C. & Abiye, T. A. (2020). Investigating stable isotope effects and moisture trajectories for rainfall events in Johannesburg, South Africa. Water SA, 46(3), 429–437. https://doi.org/10.17159/wsa/2020.v46.i3.8653

  • Martins, J. A., Silva Dias, M. A. F., & Gonçalves, F. L. T. (2009). Impact of biomass burning aerosols on precipitation in the Amazon: A modelling case study. Journal of Geophysical Research, 114, D02207.

    Article  Google Scholar 

  • Maya, M., Musekiwa, C., Mthembi, P., & Crowley, M. (2015). Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank) Mpumalanga. South African Journal of Geomatics, 4(2), 174–188.

    Article  Google Scholar 

  • Mehr, M. R., Keshavarzi, B., & Sorooshian, A. (2020). Influence of natural and urban emissions on rainwater chemistry at a southwestern Iran coastal site. Science of the Total Environment, 668, 1213–1221. https://doi.org/10.1016/j.scitotenv.2019.03.082

    Article  CAS  Google Scholar 

  • Merrill, M. D., & Tewalt, S. J. (2008). GIS representation of coal-bearing areas in Africa, US Geological Survey Open-File Report 2008–125

  • Naicker, K., Cukrowska, E., & McCarthy, T. S. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122, 29–40.

    Article  CAS  Google Scholar 

  • Oduber, F., Calvo, A. I., Castro, A., Blanco-Alegre, C., Alves, C., Barata, J., Nunes, T., Lucarelli, F., Nava, S., Calzolai, G., Cerqueira, M., Martín-Villacorta, J., Esteves, V., & Fraile, R. (2020). Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Science of the Total Environment, 734, 139202. https://doi.org/10.1016/j.scitotenv.2020.139202

    Article  CAS  Google Scholar 

  • Rösner, T. (1999). The environmental impact of seepage from gold mine tailing dams near Johannesburg, South Africa. Unpublished PhD Thesis, University of Pretoria, South Africa, 231pp.

  • Scott, G. (2011). Reducing mercury emissions from coal combustion in the energy sector in South Africa. Department of Environmental Affairs. Project Report. P24.

  • Tiwari, S., Chate, D. M., Bisht, D. S., Srivastava, M. K., & Padmanabhamurty, B. (2012). Rainwater chemistry in the North Western Himalayan Region India. Atmospheric Research, 104–105, 128–138. https://doi.org/10.1016/j.atmosres.2011.09.006

    Article  CAS  Google Scholar 

  • Van Wyk, E. (2010). Estimation of episodic groundwater recharge in semi-arid fractured hard rock aquifers, PhD Thesis, University of the Free State, Bloemfontein, South Africa, p297.

  • Zhang, L., Qiao, B., Wang, H., Tian, M., Cui, J., Fu, C., et al. (2018). Chemical characteristics of precipitation in a typical urban site of the hinterland in Three Gorges Reservoir, China. Journal of Chemistry, 2914313, 1–10. https://doi.org/10.1155/2018/2914313

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiru A. Abiye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiye, T.A. Physicochemical and metal composition of rainfall in the Johannesburg region, South Africa. Environ Monit Assess 193, 348 (2021). https://doi.org/10.1007/s10661-021-09137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09137-4

Keywords

Navigation