Skip to main content

Advertisement

Log in

A proposed modelling towards the potential impacts of climate change on a semi-arid, small-scaled aquifer: a case study of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Several studies have evaluated the impact of climate change on the alluvial aquifers; however, no research has been carried out on a small-scale aquifer without any human influences and pumping wells. The object of this study is to assess the response of such an aquifer to the climate change to observe if it can preserve its storage or not. Pali aquifer, southwest Iran, is solely discharged by Taraz-Harkesh stream and geological formations. On the other hand, it is recharged by precipitation and geological formations. The Taraz-Harkesh stream’s discharge rates and the Pali aquifer’s groundwater level were simulated by IHACRES and MODFLOW, respectively, in the base (1961–1990) and future (2021–2050) time periods under two Representative Concentration Pathways, i.e., RCP4.5 and RCP8.5. The outputs of IHACRES were regarded as the input of MODFLOW. The groundwater model was calibrated in the steady-state for the hydrological year 2007 and in the unsteady-state for the time period 2008–2014 with annual time steps. Further, the groundwater model was verified for the time period 2015–2018. The statistical criteria maintained the groundwater model’s ability, consequently measuring the root mean square error to be 0.69, 0.85, and 1.18 m for the steady calibration, unsteady calibration and verification of the groundwater model, respectively. Results indicate that the stream’s discharge rates would decrease in the future time period, especially under RCP8.5. Nevertheless, the groundwater level would not fluctuate considerably. Indeed, the groundwater resources, even a semi-arid, small-scaled aquifer, may be considered as the water supplying systems under the future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abushandi, E. H., & Merkel, B. J. (2011). Application of IHACRES rainfall-runoff model to the Wadi Dhuliel arid catchment, Jordan. Journal of Water and Climate Change, 2(1), 56–71.

    Google Scholar 

  • Adiat, K. A. N., Ajayi, O. F., Akinlalu, A. A., & Tijani, I. B. (2020). Prediction of groundwater level in basement complex terrain using artificial neural network: a case of Ijebu-Jesa, southwestern Nigeria. Applied Water Science, 10, 8. https://doi.org/10.1007/s13201-019-1094-6

    Article  Google Scholar 

  • Allen, G. R., & Liu, G. (2011). IHACRES Classic: Software for the identification of unit hydrographs and component flows. Groundwater, 49(3), 305–308.

    CAS  Google Scholar 

  • Anderson, M. G., & Bates, P. D. (2001). Model Validation: Perspectives in Hydrological Science. Wiley, the University of Michigan, p. 512.

  • Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied Groundwater Modelling: Simulation of Flow and Advective Transport. Academic Press, p. 630.

  • Ashjari, J., & Raeisi, E. (2006). Influences of anticlinal structure on regional flow, Zagros, Iran. Journal of Cave and Karst Studies, 68(3), 118–129.

    Google Scholar 

  • Badjana, H. M., Fink, M., Helmschrot, J., Diekkruger, B., Kralisch, S., Afouda, A. A., & Wala, K. (2017). Hydrological system analysis and modeling of the Kara River basin (West Africa) using a lumped metric conceptual model. Hydrological Sciences Journal, 62(7), 1094–1113.

    Google Scholar 

  • Bakker, M., Maas, K., Schaars, F., & von Asmuth, J. (2007). Analytic modelling of groundwater dynamics with an approximate impulse response function for areal recharge. Advances in Water Resources, 30(3), 493–504.

    Google Scholar 

  • Barmaki, M. D., Rezaei, M., Raeisi, E., & Ashjari, J. (2019). Comparison of surface and interior karst development in Zagros karst aquifers, southwest Iran. Journal of Cave and Karst Studies, 81(2), 84–97.

    Google Scholar 

  • Barron, O., Crosbie, R., Dawes, W. R. J., Pollock, D. W., Charles, S., Mpelasoka, F., et al. (2010). The Impact of Climate Change on Groundwater Resources: the Climate Sensitivity of Groundwater Recharge in Australia. CSIRO: Water for a Healthy Country Report to National Water Commission, Australia, p. 95.

    Google Scholar 

  • Boughariou, E., Allouche, N., Jmal, I., Mokadem, N., Ayed, B., Hajji, S., et al. (2018). Modelling aquifer behaviour under climate change and high consumption: Case study of the Sfax region, southeast Tunisia. Journal of African Earth Sciences, 141, 118–129.

    Google Scholar 

  • Boughariou, E., Bouri, S., Khanfir, H., & Zarhloule, Y. (2014). Impacts of climate change on water resources in arid and semi-aridregions: ChaffarSector, Eastern Tunisia. Desalination Water Treatment, 52(10–12), 2082–2093.

    CAS  Google Scholar 

  • Boughriba, M., & Jilali, A. (2018). Climate change and modelling of an unconfined aquifer: the Triffa plain, Morocco. Environment, Development and Sustainability, 20, 2009–2026.

    Google Scholar 

  • Bredehoeft, J. D., & Konikow, L. F. (2012). Ground-water models: validate or invalidate. Groundwater, 50(4), 493–495.

    CAS  Google Scholar 

  • Brenner, S., Coxon, G., Howden, N. J. K., Freer, J., & Hartmann, A. (2018). Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England. Natural Hazards and Earth System Sciences, 18, 445–461.

    Google Scholar 

  • Carroll, R. W. H., Pohll, G. M., Earman, S., & Hershey, R. L. A. (2008). Comparison of groundwater fluxes computed with MODFLOW and a mixing model using deuterium: application to the eastern Nevada test site and vicinity. Journal of Hydrology, 361, 371–385.

    Google Scholar 

  • Chang, J., Wang, G., & Mao, T. (2015). Simulation and prediction of supra-permafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology, 529, 1211–1220.

    Google Scholar 

  • Chen, H. P., Sun, J. Q., & Chen, X. L. (2014a). Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International Journal of Climatology, 34, 2730–2748.

  • Chen, J., Xia, J., Zhao, C., Zhang, S., Fu, G., & Ning, L. (2014b). The mechanism and scenarios of how mean annual runoff varies with climate change in Asian monsoon areas. Journal of Hydrology, 517, 595–606.

  • Chenini, I., & Mammou, A. B. (2010). Groundwater recharge study in arid region: An approach using GIS techniques and numerical modelling. Computers and Geosciences, 36, 801–817.

    Google Scholar 

  • Chin, D. A. (2013). Water quality engineering in natural systems: Fate and transport processes in the water environment. Wiley, New Jersey, p. 472.

    Google Scholar 

  • Chunn, D., Faramarzi, M., Smerdon, B., & Alessi, D. S. (2019). Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater-surface water interactions in West-Central Alberta. Water, 11(1), 110.

    Google Scholar 

  • Coppola, E. A., Rana, A. J., Poulton, M. M., Szidarovszky, F., & Uhl, V. W. (2005). A neural network model for predicting aquifer water level elevations. Ground Water, 43(2), 231–241.

    CAS  Google Scholar 

  • Coulibaly, P., Anctil, F., Aravena, R., & Bobée, B. (2001). Artificial neural network modelling of water table depth fluctuations. Water Resources Research, 37(4), 885–896.

    Google Scholar 

  • Croke, B. F. W., Andrews, F., Spate, J., & Cuddy, S. M. (2005). IHACRES user guide. Technical report 2005/19. Canberra: ICAM The Australian National University.

  • Croke, B. F. W., & Jakeman, A. J. (2008). Use of the IHACRES rainfall-runoff model in arid and semi-arid regions. In H. S. Wheater, S. Sorooshian, & K. D. Sharma (Eds.), Hydrological Modelling in Arid and Semi-arid Areas (pp. 41–48). Cambridge University Press.

    Google Scholar 

  • Daliakopoulos, I. N., Coulibaly, P., & Tsanis, I. K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309(1–4), 229–240.

    Google Scholar 

  • Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., & Batelaan, O. (2012). Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 16, 1517–1531.

    Google Scholar 

  • Demissie, Y., Valocchi, A. J., Minsker, B. S., & Bailey, B. (2009). Integrating physically-based groundwater flow models with error-correcting data-driven models to improve predictions. Journal of Hydrology, 364(3–4), 257–271.

    Google Scholar 

  • Djurovic, N., Domazet, M., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., et al. (2015). Comparison of groundwater level models based on artificial neural networks and ANFIS. The Scientific World Journal. https://doi.org/10.1155/2015/742138

    Article  Google Scholar 

  • Doherty, J. E., & Hunt, R. J. (2010). Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. U.S. Geological Survey Scientific Investigations Report 2010–5169, p. 60.

  • Dreiss, S. J. (1989). Regional scale transport in a karst aquifer: 2. Linear systems and time moment analysis. Water Resources Research, 25(1), 126–134.

  • Dye, P. J., & Croke, B. F. W. (2003). Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environmental Modelling and Software, 18, 705–712.

    Google Scholar 

  • Feng, S., Kang, S., Huo, Z., Chen, S., & Mao, X. (2008). Neural networks to simulate regional ground water levels affected by human activities. Groundwater, 46(1), 80–90.

    CAS  Google Scholar 

  • Froukh, L. J. (2002). Groundwater modelling in aquifers with highly karstic and heterogeneous characteristics (KHC) in Palestine. Water Resources Management, 16, 369–379.

    Google Scholar 

  • Gannett, M. W., Wagner, B. J., & Lite, K. E. J. (2012). Groundwater simulation and management models for the upper Klamath Basin, Oregon and California. U.S. Geological Survey Scientific Investigations Report 2012–5062, p. 92.

  • Gaur, S., Chahar, B. R., & Graillot, D. (2011). Combined use of groundwater modelling and potential zone analysis for management of groundwater. International Journal of Applied Earth Observation and Geoinformation, 13(1), 127–139.

    Google Scholar 

  • Ghose, D. K., Panda, S. S., & Swain, P. C. (2010). Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. Journal of Hydrology, 394(3–4), 296–304.

    Google Scholar 

  • Gogu, R. C., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Journal of Hydrology, 9, 555–569.

    Google Scholar 

  • Goodarzi, M., Abedi-Koupai, J., & Heidarpour, M. (2019). Investigating impacts of climate change on irrigation water demands and its resulting consequences on groundwater using CMIP5 models. Groundwater, 57(2), 259–268.

    CAS  Google Scholar 

  • Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., & Safavi, H. R. (2016). Evaluation of the effects of climate change on groundwater recharge using a hybrid method. Water Resources Management, 30, 133–148.

    Google Scholar 

  • Gorgij, A. D., Kisi, O., & Moghadam, A. A. (2017). Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran. Hydrology Research, 48(2), 455–467.

    Google Scholar 

  • Gurwin, J., & Lubczynski, M. (2005). Modelling of complex multi-aquifer systems for groundwater resources evaluation- Swidnica study case (Poland). Hydrogeology Journal, 13, 627–639.

    CAS  Google Scholar 

  • Gusyev, M. A., Haitjema, H. M., Carlson, C. P., & Gonzalez, M. A. (2013). Use of nested flow models and interpolation techniques for science-based management of the Sheyenne National Grassland, North Dakota, USA. Groundwater, 51(3), 414–420.

    CAS  Google Scholar 

  • Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., & Srinivasav, R. (2015). A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software, 73, 103–116.

    Google Scholar 

  • Haitjema, H. (2006). The role of hand calculations in ground water flow modelling. Groundwater, 44(6), 786–791.

    CAS  Google Scholar 

  • Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, the US Geological Survey Modular Groundwater Model-User Guide to Modularization Concepts and the Groundwater Flow Process. US Geological Survey Open-File, Report 00–92, US Department of Interior: Reston, VA, USA, p. 121.

  • Hassan, A. E. (2004a). Validation of numerical ground water models used to guide decision making. Groundwater, 42(2), 277-290.

  • Hassan, A. E. (2004b). A methodology for validating numerical groundwater models. Groundwater, 42(3), 347-362.

  • Hinaman, K. C. (1993). Use of a geographic information system to assemble input-data sets for a finite difference model of groundwater flow. Journal of the American Water Resources Association, 29, 401–405.

    Google Scholar 

  • Holman, I. P., Tascone, D., & Hess, T. M. (2009). A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeology Journal, 17, 1629–1641.

    Google Scholar 

  • Hu, C., Hao, Y., Yeh, T. C. J., Pang, B., & Wu, Z. (2008). Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes, 22(5), 596–604.

    Google Scholar 

  • Hunt, R. J., & Zheng, C. (2012). The current state of modelling. Groundwater, 50(3), 329–333.

    CAS  Google Scholar 

  • Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall runoff model? Water Resources Research, 29, 2637–2649.

    Google Scholar 

  • Jakeman, A. J., Littlewood, I. G., & Whitehead, P. G. (1990). Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117, 275–300.

    Google Scholar 

  • Jalalkamali, A., Sedghi, H., & Mansouri, M. (2011). Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran. Journal of Hydroinformatics, 13(4), 867–876.

    Google Scholar 

  • Jiang, D. B., Tian, Z. P., & Lang, X. M. (2016). Reliability of climate models for China through the IPCC third to fifth assessment reports. International Journal of Climatology, 36, 1114–1133.

    Google Scholar 

  • Kallioras, A., Pliakas, F., & Diamantis, I. (2010). Simulation of groundwater flow in a sedimentary aquifer system subjected to overexploitation. Water, Air and Soil Pollution, 211, 177–201.

    CAS  Google Scholar 

  • Kim, N. W., Chung, M., Won, Y. S., & Arnold, J. G. (2008). Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology, 356(1–2), 1–16.

    Google Scholar 

  • Knutti, R. (2008). Should we believe model predictions of future climate change? Philosophical Transactions of the Royal Society, A: Mathematical, Physical and Engineering Sciences, 28(366), 4647–4664.

    Google Scholar 

  • Kolm, K. E. (1996). Conceptualization and characterization of groundwater systems using geographic information systems. Engineering Geology, 42, 111–118.

    Google Scholar 

  • Konikow, L. F., & Bredehoeft, J. D. (1992). Groundwater models cannot be validated. Advances in Water Resources, 15, 75–83.

    Google Scholar 

  • Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54(4), 665–675.

    Google Scholar 

  • KWPA. (2005). Semi-Analytical Report of Hydrogeology of Lali. Khouzestan Water and Power Authority.

  • KWPA. (2019a). The observed data of discharge rates of Taraz-Harkesh stream. Khouzestan Water and Power Authority.

  • KWPA. (2019b). The observed data of groundwater level of Pali aquifer’s observation wells. Khouzestan Water and Power Authority.

  • Lachaal, F., Mlayah, A., Bedir, M., Tarhouni, J., & Leduc, C. (2012). Implementation of a 3-D groundwater flow model in a semi-arid region using MODFLOW and GIS tools: The Zeramdine-Beni Hassen Miocene aquifer system (east-central Tunisia). Computers and Geosciences, 48, 187–198.

    Google Scholar 

  • Lallahem, S., Mania, J., Hani, A., & Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1–4), 92–111.

    Google Scholar 

  • Lee, B., Hamm, S. Y., Jang, S., Cheong, J. Y., & Kim, G. B. (2014). Relationship between groundwater and climate change in South Korea. Geosciences Journal, 18(2), 209–218.

    Google Scholar 

  • Levison, J., Larocqueb, M., Ouelletb, M. A., Ferland, O., & Poirier, C. (2016). Long-term trends in groundwater recharge and discharge in a fractured bedrock aquifer- past and future conditions. Canadian Water Resources Journal, 41(4), 1–15.

    Google Scholar 

  • Li, X., Ye, S. Y., Wei, A. H., Zhou, P. P., & Wang, L. H. (2017). Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeology Journal, 25(2), 1733–1744.

    Google Scholar 

  • Littlewood, I. G., & Jakeman, A. J. (1994). A new method of rainfall-runoff modelling and its applications in catchment hydrology. Environmental Modelling, 2, 142–171.

    Google Scholar 

  • Lu, J., Jia, L., Menenti, M., Yan, Y., Zheng, C., & Zhou, J. (2018). Performance of the standardized precipitation index based on the TMPA and CMORPH precipitation products for drought monitoring in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2810163

    Article  Google Scholar 

  • Marcus, A. (2006). From 3D geomodelling systems towards 3D geoscience information systems: Data model, query functionality and data management. Computers and Geosciences, 32, 222–229.

    Google Scholar 

  • Martin, P. J., & Frind, E. O. (1998). Modelling a complex multi-aquifer system: the Waterloo Moraine. Groundwater, 83, 679–690.

    Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference groundwater flow model (p. 586). USA, U.S.

    Google Scholar 

  • Mekonnen, D. F., & Disse, M. (2018). Analyzing the future climate change of Upper Blue Nile River Basin (UBNRB) using statistical downscaling technoques. Hydrology and Earth System Sciences, 22, 2391–2408.

    Google Scholar 

  • Moeck, C., Brunner, P., & Hunkeler, D. (2016). The influence of model structure on groundwater recharge rates in climate-change impact studies. Hydrogeology Journal, 24(5), 1171–1184.

    Google Scholar 

  • Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9(2), 100237.

    Google Scholar 

  • Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K., & Sudheer, K. P. (2015). Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resources Management, 29, 5521–5532.

    Google Scholar 

  • Moriasi, D. N., Wilson, B. N., Douglas-Mankin, K. R., Arnold, J. G., & Gowda, P. H. (2012). Hydrologic and water quality models: use, calibration and validation. Transactions American Society of Agricultural and Biological Engineers, 55(4), 1241–1247.

    Google Scholar 

  • Nassery, H. R., & Salami, H. (2016). Identifying vulnerable areas of aquifer under future climate change (case study: Hamadan aquifer, West Iran). Arabian Journal of Geosciences, 9(8), 518. https://doi.org/10.1007/s12517-016-2526-3

    Article  Google Scholar 

  • Nassery, H. R., Salami, H., & Bavani, A. M. (2016). Adaptation strategies in alluvial aquifer under future climate change (Case study: Hamadan aquifer, West of Iran). 7th International Water Resources Management Conference of ICWRS, Bochum, Germany.

  • Niyazi, B. A., Ahmed, M., Masoud, M. Z., Rashed, M. A., & Basahi, J. M. (2019). Sustainable and resilient management scenarios for groundwater resources of the Red Sea coastal aquifers. Science of the Total Environment, 690, 1310–1320.

    CAS  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the aarth sciences. Science, 263(5147), 641–646.

    CAS  Google Scholar 

  • Ostad-Ali-Askari, K., Ghorbanizadeh Kharazmi, H., Shayannejad, M., & Zareian, M. J. (2019). Effect of management strategies on reducing negative impacts of climate change on water resources of the Isfahan-Borkhar aquifer using MODFLOW. River Research and Applications, 35, 611–631.

    Google Scholar 

  • Pisinaras, V. (2016). Assessment of future climate change impacts in a Mediterranean aquifer. Global NEST Journal, 18(1), 119–130.

    Google Scholar 

  • Post, D. A., & Jakeman, A. J. (1999). Predicting the daily streamflow of ungauged catchments in S.E. Australia by regionalizing the parameters of a lumped conceptual rainfall-runoff model. Ecological Modelling, 123(2), 91–104.

    Google Scholar 

  • Raeisi, E. (2002). Carbonate karst caves in Iran. In Kranjc, A. (Ed.), Evolution of Karst: from Prekarst to Cessation (pp. 339–344). Slovenia (Ljubljana-Postojna): Založba (ZRC) Publishing.

  • Raghavan, S. V., Hur, J., & Liong, S. (2018). Evaluations of NASA NEX-GDDP data over Southeast Asia: Present and future climates. Climatic Change, 148, 503–518.

    Google Scholar 

  • Refsgaard, J. C. (1996). Model and data requirements for simulation of runoff and land surface processes in relation to global circulation models. In: Sorooshian, S., Gupta, H., & Rodda, J. (Eds.), Global Environmental Change and Land Surface Processes in Hydrology: The Trial and Tribulations of Modelling and Measuring, NATO ASI, Springer, New York, 1(46), 423–445.

  • Richey, A. S. (2014). Stress and resilience in the world’s largest aquifer systems: a GRACE-based methodology. (PhD thesis), University of California.

  • Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238.

    Google Scholar 

  • Rodriguez, L. B., Cello, P. A., & Vionnet, C. A. (2006). Modelling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeology Journal, 14, 591–602.

    Google Scholar 

  • Romanazzi, A., Gentile, F., & Polemio, M. (2015). Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change. Environmental Earth Sciences, 74(1), 115–128.

    Google Scholar 

  • Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L., Taylor, K. E., & Wentz, F. J. (2014). Volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 7(3), 185–189.

    CAS  Google Scholar 

  • Schmitz, O., Karssenberg, D., vanDeursen, W. P., & Wesseling, C. (2009). Linking external components to a spatio-temporal modelling framework: coupling MODFLOW and PCRaster. Environmental Modelling and Software, 24(9), 1088–1099.

    Google Scholar 

  • Scibeck, J., & Allen, D. M. (2006). Comparing modeled responses of two high-permeability, unconfined aquifers to mpredicted climate change. Global and Planetary Change, 50, 50–62.

    Google Scholar 

  • Sepulveda, N. (2009). Analysis of methods to estimate spring flows in a karst aquifer. Groundwater, 47(3), 337–349.

    CAS  Google Scholar 

  • Shao, J. L., Li, L., Cui, Y. L., & Zhang, Z. J. (2013). Groundwater flow simulation and its application in groundwater resource evaluation in the North China Plain, China. Acta Geologica Sinica English, 87, 243–253.

    Google Scholar 

  • Shrestha, S., Bach, T. V., & Pandey, V. P. (2016). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science and Policy, 61, 1–13.

    Google Scholar 

  • Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J. P., Dutton, E. G., & Thomason, L. W. (2011). The persistently variable background stratospheric aerosol layer and global climate change. Science, 333(6044), 866–870.

    CAS  Google Scholar 

  • Sophocleous, M. (1997). Managing water resources systems: why “safe yield” is not sustainable. Groundwater, 35(4), 561–723.

    CAS  Google Scholar 

  • Sun, Y., Wendi, D., Kim, D. E., & Liong, S. Y. (2016). Technical note: Application of artificial neural networks in groundwater level forecasting- a case study in a Singapore swamp forest. Hydrology and Earth System Sciences, 20, 1405–1412.

    Google Scholar 

  • Szidarovszky, F., Coppola, E. A., Long, J., Hall, A. D., & Poulton, M. M. (2007). A hybrid artificial neural network-numerical model for ground water problems. Groundwater, 45(5), 590–600.

    CAS  Google Scholar 

  • Tam, V. T., Batelaan, O., & Beyen, I. (2016). Impact assessment of climate change on a coastal groundwater system, Central Vietnam. Environmental Earth Sciences, 75(10), 908.

    Google Scholar 

  • Tapoglou, E., Trichakis, I. C., Dokou, Z., Nikolos, I. K., & Karatzas, G. P. (2014). Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrological Sciences, 59(6), 1225–1239.

    Google Scholar 

  • Tegegne, G., Park, D. K., & Kim, Y. O. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66.

    Google Scholar 

  • Theodossiou, N. (2016). Assessing the impacts of climate change on the sustainability of groundwater aquifers. Application in Moudania aquifer in N. Greece. Environmental Processes, 3, 1045–1061.

    Google Scholar 

  • Thomas, B. F., Caineta, J., & Nanteza, J. (2017). Global assessment of groundwater sustainability based on storage anomalies. Geophysical Research Letters, 44(22), 11445–11455.

    Google Scholar 

  • Thrasher, B., & Nemani, R. (2015). NEX-GDDP technical note version 1. Washington D. C.

  • Trichakis, I. C., Nikolos, I. K., & Karatzas, G. P. (2011). Artificial neural network (ANN) based modelling for karstic groundwater level simulation. Water Resources Management, 25(4), 1143–1152.

    Google Scholar 

  • Tsanis, I. K., Coulibaly, P., & Daliakopoulos, I. N. (2008). Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. Journal of Hydroinformatics, 10(4), 317–330.

    Google Scholar 

  • Uddameri, V. (2007). Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environmental Geology, 51(6), 885–895.

    Google Scholar 

  • Waibel, M. S., Gannett, M. W., Chang, H., & Hulbe, C. L. (2013). Spatial variability of the response to climate change in regional groundwater systems- examples from simulations in the Deschutes Basin, Oregon. Journal of Hydrology, 486, 187–201.

    Google Scholar 

  • Wang, S. Q., Shao, J. L., Song, X. F., Zhang, Y. B., Huo, Z. B., & Zhou, X. Y. (2008). Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environmental Geology, 55, 1449–1462.

    Google Scholar 

  • Winston, R. B. (1999). MODFLOW-related freeware and shareware resources on the internet. Computers and Geosciences, 25, 377–382.

    Google Scholar 

  • Woods, J. A., Teubner, M. D., Simmons, C., & Narayan, K. A. (2003). Numerical error in groundwater flow and solute transport simulation. Water resources research, 39(6), 1158.

    Google Scholar 

  • Wu, J. C., & Zeng, X. K. (2013). Review of the uncertainty analysis of groundwater numerical. Chinese Science Bulletin, 58, 3044–3052.

    Google Scholar 

  • Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., & Jakeman, A. J. (1997). Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resources Research, 33(1), 153–166.

    Google Scholar 

  • Yen, B. C., Cheng, S. T., & Melching, C. S. (1986). Stochastic and Risk Analysis in Hydraulic Engineering. Water Resources Publications.

    Google Scholar 

  • Yoshioka, Y., Nakamura, K., Horino, H., & Kawashima, S. (2016). Numerical assessments of the impacts of climate change on regional groundwater systems in a paddy-dominated alluvial fan. Paddy Water Environment, 14, 93–103.

    Google Scholar 

  • Yousafzai, A., Eckstein, Y., & Dahl, P. (2008). Numerical simulation of groundwater flow in the Peshawar intermontane basin, northwest Himalayas. Hydrogeology Journal, 16, 1395–1409.

    CAS  Google Scholar 

  • Zeydalinejad, N., Nassery, H. R., Shakiba, A., & Alijani, F. (2020a). Prediction of the karstic spring flow rates under climate change by climatic variables based on the artificial neural network: a case study of Iran. Environmental Monitoring and Assessment, 192(6), 375. https://doi.org/10.1007/s10661-020-08332-z

    Article  Google Scholar 

  • Zeydalinejad, N., Nassery, H. R., Alijani, F., & Shakiba, A. (2020b). Forecasting the resilience of Bibitarkhoun karst spring, southwest Iran, to the future climate change. Modelling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00819-5

    Article  Google Scholar 

  • Zeydalinejad, N., Nassery, H. R., Shakiba, A., & Alijani, F. (2020c). The evaluations of NEX-GDDP and Marksim downscaled datasets over Lali region, southwest Iran. Journal of the Earth and Space Physics. https://doi.org/10.22059/jesphys.2020.295152.1007186

    Article  Google Scholar 

  • Zghibi, A., Zouhri, L., & Tarhouni, J. (2011). Groundwater modelling and marine intrusion in the semi-arid systems (Cap-Bon, Tunisia). Hydrological Processes, 25(11), 1822–1836.

    Google Scholar 

  • Zhou, P., Wang, G., & Duan, R. (2020). Impacts of long-term climate change on the groundwater flow dynamics in a regional groundwater system: Case modeling study in Alashan, China. Journal of Hydrology, 590, 125557. https://doi.org/10.1016/j.jhydrol.2020.125557

    Article  Google Scholar 

  • Zhou, T. J., & Chen, X. L. (2015). Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback. Journal of Meteorological Research, 29, 884–895.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their constructive comments on the earlier manuscript, which lead to an improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejat Zeydalinejad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassery, H.R., Zeydalinejad, N., Alijani, F. et al. A proposed modelling towards the potential impacts of climate change on a semi-arid, small-scaled aquifer: a case study of Iran. Environ Monit Assess 193, 182 (2021). https://doi.org/10.1007/s10661-021-08955-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08955-w

Keywords

Navigation