Skip to main content

Advertisement

Log in

Nutrient pollutant loading and source apportionment along a Mediterranean river

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rivers are increasingly being subjected to increased anthropogenic pollution stresses that undermine their designated uses and negatively affect sensitive coastal regions. The degradation of river water quality is attributed to both point and nonpoint sources of pollution. In this study, we determine the relative contribution of point and nonpoint pollutant loads in the Beirut River basin, a poorly monitored seasonal Mediterranean river. Water quality samples were collected on a weekly basis over 2 consecutive years (2016 and 2017) from four sampling sites that represent a gradient of increasing urbanization. Flow-concentration models were first developed to estimate total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) loads reaching the different sub-basins. The performance of the regression models varied by location and by pollutant, with improved performance in the downstream sections (adjusted R2 66% for TP and 59% for TN). Loads were also determined using the Beale’s ratio method, which generally underestimated the loads as compared with the regression-based models. The relative contribution of the nonpoint source loads were then quantified using the Open Nonpoint Source Pollution and Erosion Comparison Tool (OpenNSPECT). The results showed that point sources were the main cause of water quality impairment across the entire basin, with load contributions varying between 75% in the headwaters and 98% in the urbanized downstream sections. The adopted modeling approach in this study provides an opportunity to better understand pollutant load dynamics in poorly monitored basins and a mechanism to apportion pollution loads between point and nonpoint sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Google Scholar 

  • Alameddine, I., Qian, S. S., & Reckhow, K. H. (2011). A Bayesian changepoint–threshold model to examine the effect of TMDL implementation on the flow–nitrogen concentration relationship in the Neuse River basin. Water Research, 45(1), 51–62.

    CAS  Google Scholar 

  • Alberto, W. D., del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894.

    CAS  Google Scholar 

  • Alberto, A., St-Hilaire, A., Courtenay, S. C., & Van Den Heuvel, M. R. (2016). Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada. Environmental Monitoring and Assessment, 188(7), 415.

    Google Scholar 

  • Auerbach, D. A., Deisenroth, D. B., McShane, R. R., McCluney, K. E., & LeRoy Poff, N. (2014). Beyond the concrete: accounting for ecosystem services from free-flowing rivers. Ecosystem Services, 10, 1–5. https://doi.org/10.1016/j.ecoser.2014.07.005.

    Article  Google Scholar 

  • Balter, M. (2013). Archaeologists say the ‘Anthropocene’is here—but it began long ago. Science, 340(6130), 261–262.

    CAS  Google Scholar 

  • Bernal, S., von Schiller, D., Sabater, F., & Martí, E. (2013). Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia, 719(1), 31–42.

    CAS  Google Scholar 

  • Borja, A., Galparsoro, I., Solaun, O., Muxika, I., Tello, E. M., Uriarte, A., et al. (2006). The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuarine, Coastal and Shelf Science, 66(1–2), 84–96.

    Google Scholar 

  • Bowes, M. J., Smith, J. T., Jarvie, H. P., & Neal, C. (2008). Modelling of phosphorus inputs to rivers from diffuse and point sources. Science of the Total Environment, 395(2–3), 125–138.

    CAS  Google Scholar 

  • Brezonik, P. L., & Stadelmann, T. H. (2002). Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the twin cities metropolitan area, Minnesota, USA. Water Research, 36(7), 1743–1757.

    CAS  Google Scholar 

  • Brodie, J. E. (2013). 2013 scientific consensus statement: land use impacts on the great barrier reef water quality and ecosystem condition: reef water quality protection plan secretariat.

  • Bu, H., Tan, X., Li, S., & Zhang, Q. (2010). Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicology and Environmental Safety, 73(5), 907–913.

    CAS  Google Scholar 

  • Carpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. (2011). State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75–99.

    Google Scholar 

  • Cha, Y., Stow, C. A., Reckhow, K. H., DeMarchi, C., & Johengen, T. H. (2010). Phosphorus load estimation in the Saginaw River, MI using a Bayesian hierarchical/multilevel model. Water Research, 44(10), 3270–3282. https://doi.org/10.1016/j.watres.2010.03.008.

    Article  CAS  Google Scholar 

  • Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 42(13), 3285–3304.

    CAS  Google Scholar 

  • Chapman, D. V. (1996). Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring (2nd ed.). London: E & FN Spon.

    Google Scholar 

  • Chen, D., Hu, M., Wang, J., Guo, Y., & Dahlgren, R. A. (2016). Factors controlling phosphorus export from agricultural/forest and residential systems to rivers in eastern China, 1980–2011. Journal of Hydrology, 533, 53–61.

    CAS  Google Scholar 

  • Cohn, T. A. (1995). Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Reviews of Geophysics, 33(S2), 1117–1123.

    Google Scholar 

  • Cohn, T. A., Delong, L. L., Gilroy, E. J., Hirsch, R. M., & Wells, D. K. (1989). Estimating constituent loads. Water Resources Research, 25(5), 937–942.

    CAS  Google Scholar 

  • Da Silva, A. M. M., & Sacomani, L. B. (2001). Using chemical and physical parameters to define the quality of Pardo River water (Botucatu-SP-Brazil). Water Research, 35(6), 1609–1616.

    Google Scholar 

  • Darwish, T. (2006). Soil map of Lebanon: 1:50 000. Beirut: Lebanese National Council for Scientific Research. Remote Sensing, Remote Sensing Center.

    Google Scholar 

  • Diaz, R. J. (2001). Overview of hypoxia around the world. Journal of Environmental Quality, 30(2), 275–281.

    CAS  Google Scholar 

  • Ding, X., Shen, Z., Liu, R., Chen, L., & Lin, M. (2014). Effects of ecological factors and human activities on nonpoint source pollution in the upper reach of the Yangtze River and its management strategies. Hydrology and Earth System Sciences Discussions, 11(1), 691–721.

    Google Scholar 

  • Dolan, D. M., Yui, A. K., & Geist, R. D. (1981). Evaluation of river load estimation methods for total phosphorus. Journal of Great Lakes Research, 7(3), 207–214.

    CAS  Google Scholar 

  • Efthimiou, N. (2019). The role of sediment rating curve development methodology on river load modeling. Environmental Monitoring and Assessment, 191(2), 108.

    Google Scholar 

  • El-Nakib, S., Alameddine, I., Abou Najm, M., & Massoud, M. (2018). Quantifying the spatio-temporal variability of water quality in an urbanizing perennial Mediterranean river: the case of the Beirut River. In S. Hernández & S. Mambretti (Eds.), Water Pollution XIV, A Coruña, Spain (Vol. 228, pp. 187–197). WIT Transactions on Ecology and the Environment.

  • Elwan, A., Singh, R., Patterson, M., Roygard, J., Horne, D., Clothier, B., & Jones, G. (2018). Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads. Environmental Monitoring and Assessment, 190(2), 78.

    Google Scholar 

  • Ferguson, R. (1986). River loads underestimated by rating curves. Water Resources Research, 22(1), 74–76.

    CAS  Google Scholar 

  • Ferguson, R. (1987). Accuracy and precision of methods for estimating river loads. Earth Surface Processes and Landforms, 12(1), 95–104.

    Google Scholar 

  • Gelman, A., Su, Y.-S., Yajima, M., Hill, J., Pittau, M. G., & Kerman, J. (2016). Arm: data analysis using regression and multilevel/hierarchical models. 2015. URL https://CRAN.R-project.org/package=arm . R package version, 1.9–3.

  • Gilroy, E., Hirsch, R., & Cohn, T. (1990). Mean square error of regression-based constituent transport estimates. Water Resources Research, 26(9), 2069–2077.

    Google Scholar 

  • Granger, S., Bol, R., Anthony, S., Owens, P., White, S., & Haygarth, P. (2010). Towards a holistic classification of diffuse agricultural water pollution from intensively managed grasslands on heavy soils. In Advances in Agronomy (Vol. 105, pp. 83–115). Elsevier.

  • Grizzetti, B., Bouraoui, F., De Marsily, G., & Bidoglio, G. (2005). A statistical method for source apportionment of riverine nitrogen loads. Journal of Hydrology, 304(1–4), 302–315.

    CAS  Google Scholar 

  • Haggard, B., Soerens, T., Green, W., & Richards, R. (2003). Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas. Applied Engineering in Agriculture, 19(2), 187.

    Google Scholar 

  • Harmel, R., & King, K. (2005). Uncertainty in measured sediment and nutrient flux in runoff from small agricultural watersheds. Transactions of ASAE, 48(5), 1713–1721.

    CAS  Google Scholar 

  • Harrison, J. A., Seitzinger, S. P., Bouwman, A., Caraco, N. F., Beusen, A. H., & Vörösmarty, C. J. (2005). Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Global Biogeochemical Cycles, 19(4).

  • Hirsch, R. M. (2014). Large biases in regression-based constituent flux estimates: causes and diagnostic tools. JAWRA Journal of the American Water Resources Association, 50(6), 1401–1424.

    Google Scholar 

  • Hirsch, R. M., Moyer, D. L., & Archfield, S. A. (2010). Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs 1. JAWRA Journal of the American Water Resources Association, 46(5), 857–880.

    Google Scholar 

  • Jomaa, S., Aboud, I., Dupas, R., Yang, X., Rozemeijer, J., & Rode, M. (2018). Improving nitrate load estimates in an agricultural catchment using event response reconstruction. Environmental Monitoring and Assessment, 190(6), 330.

    Google Scholar 

  • Junior, F. T., Lima, A., & Barroso, G. (2018). Emission rates of nitrogen and phosphorus in a tropical coastal river basin: a strategic management approach. Environmental Monitoring and Assessment, 190(12), 747.

    Google Scholar 

  • Kalogianni, E., Vourka, A., Karaouzas, I., Vardakas, L., Laschou, S., & Skoulikidis, N. T. (2017). Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Science of the Total Environment, 603, 639–650.

    Google Scholar 

  • Kamjunke, N., Büttner, O., Jäger, C. G., Marcus, H., von Tümpling, W., Halbedel, S., Norf, H., Brauns, M., Baborowski, M., Wild, R., Borchardt, D., & Weitere, M. (2013). Biogeochemical patterns in a river network along a land use gradient. Environmental Monitoring and Assessment, 185(11), 9221–9236.

    CAS  Google Scholar 

  • Karydis, M., & Kitsiou, D. (2012). Eutrophication and environmental policy in the Mediterranean Sea: a review. Environmental Monitoring and Assessment, 184(8), 4931–4984.

    CAS  Google Scholar 

  • KBAC (2007). Ko’olaupoko watershed restoration action strategy. Hawai‘i’s Department of Health: Kailua Bay advisory council (KBAC).

  • Koch, R. W., & Smillie, G. M. (1986). Bias in hydrologic prediction using log-transformed regression models. JAWRA Journal of the American Water Resources Association, 22(5), 717–723.

    Google Scholar 

  • Lee, C. J., Hirsch, R. M., Schwarz, G. E., Holtschlag, D. J., Preston, S. D., Crawford, C. G., et al. (2016). An evaluation of methods for estimating decadal stream loads. Journal of Hydrology, 542, 185–203.

    Google Scholar 

  • Littlewood, I. (1995). Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers. Environment International, 21(2), 211–220.

    CAS  Google Scholar 

  • Littlewood, I., & Marsh, T. (2005). Annual freshwater river mass loads from Great Britain, 1975–1994: estimation algorithm, database and monitoring network issues. Journal of Hydrology, 304(1–4), 221–237.

    CAS  Google Scholar 

  • Littlewood, I., Watts, C., & Custance, J. (1998). Systematic application of United Kingdom river flow and quality databases for estimating annual river mass loads (1975–1994). Science of the Total Environment, 210, 21–40.

    Google Scholar 

  • López-Doval, J. C., Ginebreda, A., Caquet, T., Dahm, C. N., Petrovic, M., Barceló, D., et al. (2013). Pollution in Mediterranean-climate rivers. Hydrobiologia, 719(1), 427–450.

    Google Scholar 

  • Malagó, A., Bouraoui, F., Grizzetti, B., & De Roo, A. (2019). Modelling nutrient fluxes into the Mediterranean Sea. Journal of Hydrology: Regional Studies, 22, 100592.

    Google Scholar 

  • Malan, H., & Day, J. (2003). Linking flow, water quality and potential effects on aquatic biota within the reserve determination process. Water SA, 29(3), 297–304.

    Google Scholar 

  • Massoud, M. A., El-Fadel, M., Scrimshaw, M. D., & Lester, J. N. (2006). Factors influencing development of management strategies for the Abou Ali River in Lebanon II: seasonal and annual variation. Science of the Total Environment, 362(1–3), 31–41.

    CAS  Google Scholar 

  • Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 358(1440), 1935–1955.

    CAS  Google Scholar 

  • Meybeck, M., Dürr, H. H., & Vörösmarty, C. J. (2006). Global coastal segmentation and its river catchment contributors: a new look at land-ocean linkage. Global Biogeochemical Cycles, 20(1).

  • Moatar, F., & Meybeck, M. (2005). Compared performances of different algorithms for estimating annual nutrient loads discharged by the eutrophic river Loire. Hydrological Processes: An International Journal, 19(2), 429–444.

    CAS  Google Scholar 

  • Moatar, F., Person, G., Meybeck, M., Coynel, A., Etcheber, H., & Crouzet, P. (2006). The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Science of the Total Environment, 370(2–3), 515–531.

    CAS  Google Scholar 

  • Mockler, E. M., Deakin, J., Archbold, M., Daly, D., & Bruen, M. (2016). Nutrient load apportionment to support the identification of appropriate water framework directive measures. In Biology and Environment: Proceedings of the Royal Irish Academy (Vol. 116, pp. 245–263, Vol. 3). JSTOR.

  • Morrison, K. D., & Kolden, C. A. (2015). Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment. Journal of Environmental Management, 151, 113–123.

    Google Scholar 

  • National Research Council. (2001). Assessing the TMDL approach to water quality management. Washington D.C.: National Academies Press.

    Google Scholar 

  • NOAA (2012). Tutorial for OpenNSPECT, version 1.1: example analyses for the Waianae Region of Oahu, Hawaii. National Oceanic and Atmospheric Administration (NOAA) coastal services center.

  • NOAA (2014). Technical guide for OpenNSPECT, version 1.2. National Oceanic and Atmospheric Administration (NOAA) coastal services center.

  • Novotny, V. (1999). Integrating diffuseinonpoint pollution control and water body restoration into watershed management. JAWRA Journal of the American Water Resources Association, 35(4), 717–727.

    Google Scholar 

  • Novotny, V. (2003). Water quality: Diffuse pollution and watershed management. Hoboken: Wiley.

    Google Scholar 

  • Park, Y. S., & Engel, B. A. (2014). Use of pollutant load regression models with various sampling frequencies for annual load estimation. Water, 6(6), 1685–1697.

    CAS  Google Scholar 

  • Pellerin, B. A., Bergamaschi, B. A., Gilliom, R. J., Crawford, C. G., Saraceno, J., Frederick, C. P., Downing, B. D., & Murphy, J. C. (2014). Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. Environmental Science & Technology, 48(21), 12612–12619.

    CAS  Google Scholar 

  • Phillips, J., Webb, B., Walling, D., & Leeks, G. (1999). Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes, 13(7), 1035–1050.

    Google Scholar 

  • Preston, S. D., Bierman, V. J., & Silliman, S. E. (1989). An evaluation of methods for the estimation of tributary mass loads. Water Resources Research, 25(6), 1379–1389.

    CAS  Google Scholar 

  • Qian, S. S. (2016). Environmental and ecological statistics with R (2ed., Chapman & Hall/CRC applied environmental statistics). Boca Ratan, FL.: Chapman and hall/CRC.

  • Quilbé, R., Rousseau, A. N., Duchemin, M., Poulin, A., Gangbazo, G., & Villeneuve, J.-P. (2006). Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). Journal of Hydrology, 326(1–4), 295–310.

    Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. In R. D. C. Team (Ed.), R Foundation for Statistical Computing. Vienna: R Foundation for statistical computing.

  • Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–1537.

    Google Scholar 

  • Reinelt, L. E., & Grimvall, A. (1992). Estimation of nonpoint source loadings with data obtained from limited sampling programs. Environmental Monitoring and Assessment, 21(3), 173–192.

    CAS  Google Scholar 

  • Rice, E. W., Bridgewater, L., Water Environment, F., American Water Works, A., & American Public Health, A. (2012). Standard methods for the examination of water and wastewater (Vol. 22nd, Vol. Book, Whole). Washington, D.C: American Public Health Association.

  • Richards, R. P. (1998). Estimation of pollutant loads in rivers and streams: a guidance document for NPS programs. Project report prepared under Grant X998397-01-0, US Environmental Protection Agency, Region VIII, Denver, 108.

  • Richards, R. P., & Holloway, J. (1987). Monte Carlo studies of sampling strategies for estimating tributary loads. Water Resources Research, 23(10), 1939–1948.

    CAS  Google Scholar 

  • Rissman, A. R., & Carpenter, S. R. (2015). Progress on nonpoint pollution: Barriers & opportunities. Daedalus, 144(3), 35–47.

    Google Scholar 

  • Rozemeijer, J. C., Van der Velde, Y., Van Geer, F. C., De Rooij, G. H., Torfs, P. J., & Broers, H. P. (2010). Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events. Environmental Science & Technology, 44(16), 6305–6312.

    CAS  Google Scholar 

  • Runkel, R. L., Crawford, C. G., & Cohn, T. A. (2004). Load estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers.

  • Salles, C., Tournoud, M. G., & Chu, Y. (2008). Estimating nutrient and sediment flood loads in a small Mediterranean river. Hydrological Processes: An International Journal, 22(2), 242–253.

    CAS  Google Scholar 

  • Scavia, D., & Bricker, S. B. (2006). Coastal eutrophication assessment in the United States. In nitrogen cycling in the Americas: natural and anthropogenic influences and controls (pp. 187–208). Springer.

  • Schoumans, O., Chardon, W., Bechmann, M., Gascuel-Odoux, C., Hofman, G., Kronvang, B., et al. (2014). Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Science of the Total Environment, 468, 1255–1266.

    Google Scholar 

  • Smith, C., & Croke, B. (2005). Sources of uncertainty in estimating suspended sediment load. IAHS-AISH publication, 136-143.

  • Srinivasan, R., & Arnold, J. G. (1994). Integration of a basin-scale water quality model with GIS. Journal of the American Water Resources Association, 30(3), 453–462.

    Google Scholar 

  • Stenback, G. A., Crumpton, W. G., Schilling, K. E., & Helmers, M. J. (2011). Rating curve estimation of nutrient loads in Iowa rivers. Journal of Hydrology, 396(1–2), 158–169.

    CAS  Google Scholar 

  • Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., et al. (2003). Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems, 6(5), 407–423.

    Google Scholar 

  • Tappin, A. D., Mankasingh, U., McKelvie, I. D., & Worsfold, P. J. (2013). Temporal variability in nutrient concentrations and loads in the river Tamar and its catchment (SW England) between 1974 and 2004. Environmental Monitoring and Assessment, 185(6), 4791–4818.

    CAS  Google Scholar 

  • Tin, M. (1965). Comparison of some ratio estimators. Journal of the American Statistical Association, 60(309), 294–307. https://doi.org/10.1080/01621459.1965.10480792.

    Article  Google Scholar 

  • Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River basin for 200 years. Bioscience, 53(6), 563–572.

    Google Scholar 

  • Tzoraki, O., Nikolaidis, N. P., Cooper, D., & Kassotaki, E. (2014). Nutrient mitigation in a temporary river basin. Environmental Monitoring and Assessment, 186(4), 2243–2257.

    CAS  Google Scholar 

  • Ullrich, A., & Volk, M. (2010). Influence of different nitrate–N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment, 171(1–4), 513–527.

    Google Scholar 

  • UN (2003). Water: A Matter of Life and Death. Fact sheet. International Year of Freshwater 2003: United Nations.

  • USEPA (2000). Ambient water quality criteria recommendations: information supporting the development of state and tribal nutrient criteria for rivers and streams in nutrient Ecoregion III: Xeric west. In O. o. W. a. O. o. S. a. Technology (Ed.). Washington, D.C.: United States Environmental Protection Agency.

  • Vandenberghe, V., Goethals, P., Van Griensven, A., Meirlaen, J., De Pauw, N., Vanrolleghem, P., et al. (2005). Application of automated measurement stations for continuous water quality monitoring of the Dender River in Flanders, Belgium. Environmental Monitoring and Assessment, 108(1–3), 85–98.

    CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    CAS  Google Scholar 

  • Viswanathan, C., & Karim, M. (2015). Non point source pollution modeling using NSPECT model to facilitate watershed planning. In World Environmental and Water Resources Congress 2015 (pp. 2599–2606).

    Google Scholar 

  • Vollenweider, R. A., Rinaldi, A., Viviani, R., & Todini, E. (1996). Assessment of the state of eutrophication in the Mediterranean Sea. In UNEP (Ed.). Athens: MAP Technical Reports Series.

    Google Scholar 

  • Vörösmarty, C. J., Lévêque, C., Revenga, C., Bos, R., Caudill, C., Chilton, J., et al. (2005). Fresh water. Millennium ecosystem assessment, 1, 165–207.

    Google Scholar 

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561.

    Google Scholar 

  • Wang, Y., He, B., Duan, W., Li, W., Luo, P., & Razafindrabe, B. H. N. (2016). Source apportionment of annual water pollution loads in river basins by remote-sensed land cover classification. Water, 8(9), 361.

    Google Scholar 

  • Wu, Y., & Chen, J. (2013). Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators, 32, 294–304.

    CAS  Google Scholar 

  • Yang, Y., & Wang, L. (2010). A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management, 24(9), 1819–1843.

    Google Scholar 

Download references

Funding

This study was made possible through the generous support of the American University of Beirut’s Research Board (Award No.: 103008; Project No.: 22713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Alameddine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nakib, S., Alameddine, I., Massoud, M. et al. Nutrient pollutant loading and source apportionment along a Mediterranean river. Environ Monit Assess 192, 274 (2020). https://doi.org/10.1007/s10661-020-8220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8220-7

Keywords

Navigation