Skip to main content

Advertisement

Log in

Water environments: metal-tolerant and antibiotic-resistant bacteria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Musharafi, S. K., Mahmoud, I. Y., & Al-Bahry, S. N. (2015). Heavy metals and antibiotic resistant bacteria in green turtles are indicators of environmental pollution. International Journal of Environmental and Ecological Engineering, 9(4), 356–359.

    Google Scholar 

  • Acharya, K.P. and Wilson, R.T. (2019) Antimicrobial Resistance in Nepal. Frontiers Medicine, 6, 105. https://doi.org/10.3389/fmed.2019.00105.

  • Arias-Andres, M., Klumper, U., Rojas-Jimenez, K., & Grossart, H.-P. (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237, 253–261.

    CAS  Google Scholar 

  • Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(1), 176–182.

    CAS  Google Scholar 

  • Baquero, F., Martínez, J. L., & Cantó, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265.

    CAS  Google Scholar 

  • Barbieri, P., Galassi, G., & Galli, E. (1998). Plasmid-encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. FEMS Microbiology Ecology, 20, 185–194.

    Google Scholar 

  • Berg, J., Thorsen, M. K., Holm, P. E., Jensen, J., Nybroe, O., & Brandt, K. K. (2010). Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environmental Science and Technology, 44, 8724–8728.

    CAS  Google Scholar 

  • Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., and Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23.

  • Calomiris, J., Armstrong, L. J., & Seilde, R. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Applied Environmental Microbiology, 48, 1238–1242.

    Google Scholar 

  • Canstein, V. H., Li, Y., Timmis, K. N., Deckwer, W. D., & Wagner-Dobler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied Environmental Microbiology, 65, 5279–5284.

    Google Scholar 

  • Chan, K. Y., & Dean, A. C. R. (1988). Effects of cadmium and lead on growth, respiration and enzyme activity of the marine bacterium Pseudomonas marina. Chemosphere, 17, 597–607.

    CAS  Google Scholar 

  • Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, co-resistance. International Biodeterioration & Biodegradation, 51(4), 271–276.

    CAS  Google Scholar 

  • Cycon, M., Mrozik, A., Piotrowska-Seget, Z. (2019) Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Frontiers Microbiology, 10, 338. https://doi.org/10.3389/fmicb.2019.00338.

  • De Souza, M., Nair, S., Loka Bharathi, P. A., & Chandramohan, D. (2006). Metal and antibiotic-resistance in psychotropic bacteria from Antarctic marine waters. Ecotoxicology, 15, 379–384.

    Google Scholar 

  • Di Cesare, A., Eckert, E. M., Teruggi, A., Fontaneto, D., Bertoni, R., Callieri, C., & Corno, G. (2015). Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology, 24, 3888–3900.

    Google Scholar 

  • Farias, P. G., Espírito Santo, C., Branco, R., Francisco, R., Santos, S., Hansen, L., Sorensen, S., & Moraisa, P. V. (2015). Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic Bacteria from marine hydrothermal vent fields. Applied Environmental Microbiology, 7, 2534–2543.

    Google Scholar 

  • Fernández-Calviño D &, Bååth, E. (2013). Co-selection for antibiotic tolerance in Cu-polluted soil is detected at higher Cu-concentrations than increased Cu-tolerance. Soil Biology and Biochemistry, 57, 953–956.

  • Flach, C. F., Pal, C., Svensson, C. J., Kristiansson, E., Östman, M., Bengtsson-Palme, J., Tysklind, M., & Joakim Larsson, D. G. (2017). Does antifouling paint select for antibiotic resistance? The Science of the Total Environment, 461–468.

  • Forsberg, K. J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O. &, Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098),1107–1111.

  • Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.-G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9, 1269–1279.

    CAS  Google Scholar 

  • Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., et al. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. Journal of Bacteriology, 190, 5095–5100.

  • Gonzàles-Aravena, M., Urtubia, R., Del Campo, K., Lavìn, P., Wong, C. M. V. L., Càrdenas, C. A., & Gonzàles-Rocha, G. (2016). Antibiotic and metal resistance of cultivable bacteria in the Antarctic Sea urchin. Antarctic Science, 1–8.

  • Guo, X., Chen, C., & Wang, J. (2019). Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere, 228, 300–308. https://doi.org/10.1016/j.chemosphere.

    Article  CAS  Google Scholar 

  • Hacioglu, N., & Tosunoglu, M. (2014). Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species. Environmental Monitoring and Assessment, 186, 407–413.

    CAS  Google Scholar 

  • Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, J. M., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89, 497–504.

    CAS  Google Scholar 

  • Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied Environmental Microbiology, 81(21), 7593–7599.

    CAS  Google Scholar 

  • Hu, Q., & Chen, L. (2016). Virulence and antibiotic and heavy metal resistance of Vibrio parahaemolyticus isolated from crustaceans and shellfish in Shanghai, China. Journal of Food Protection, 79(8), 1371–1377.

    CAS  Google Scholar 

  • Huang, Y., Zhang, L., Tiu, L., & Wang, H. H. (2015). Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. Frontiers in Microbiology, 6, 914.

    Google Scholar 

  • Imran, M., Das, K. R., & Naik, M. M. (2019). Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere, 215, 846–857.

    CAS  Google Scholar 

  • Jenkins, D. J., & Stekel, D. J. (2010). De novo evolution of complex, global and hierarchical gene regulatory mechanisms. Journal of Molecular Evolution, 71(2), 128–140.

    CAS  Google Scholar 

  • Kang, C., & So, J. (2016). Antibiotic and heavy metal resistance in Shewanella putrefaciens strains isolated from shellfishes collected from West Sea, Korea. Marine Pollution Bulletin, 112, 111–116.

    CAS  Google Scholar 

  • Keswani, A., Oliver, D. M., Gutierrez, T., & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, 10–19.

    CAS  Google Scholar 

  • Kholodii, G., Mindlin, S., Petrova, M., & Minakhina, S. (2003). Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition. FEMS Microbiology Letters, 226(2), 251–255.

    CAS  Google Scholar 

  • Kimiran-Erdem, A., Arslan, E. O., Sanli Yurudu, N. O., Zeybek, Z., Dogruoz, N., & Cotuk, A. (2007). Isolation and identification of enterococci from seawater samples: assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring and Assessment, 125(1–3), 219–228.

    CAS  Google Scholar 

  • Kimiran-Erdem, A., Arslan-Aydoğdu, E. O., Gürün, S., & Altun, O. (2015). Determination of multiple antibiotic and heavy metal resistance of the bacteria isolated from the Küçükçekmece Lagoon, Turkey. Polish Journal of Environmental Studies 24(3), 1077–1084.

  • Koditschek, L. K., & Guyre, P. (1974). Resistance transfer fecal coliforms isolated from the Whippany River. Water Research, 8, 747–752.

    Google Scholar 

  • Kraemer, S.A., Ramachandran, A., Perron, G.G. (2019). Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms, 7, 180. https://doi.org/10.3390/microorganisms7060180.

  • Laganà, P., Caruso, G., Corsi, I., Bergami, E., Venuti, V., Majolino, D., La Ferla, R., Azzaro, M., & Cappello, S. (2019). Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). International. Journal of Hygiene and Environmental Health, 222, 89–100.

    Google Scholar 

  • Lee, S. W., Najiah, M., Wendy, W., Zahrol, A., & Nadirah, M. (2009). Multiple antibiotic resistance and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery. Agricultural Sciences in China, 8(6), 740–745.

    CAS  Google Scholar 

  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460–467. https://doi.org/10.1016/j.envpol.2018.02.050.

    Article  CAS  Google Scholar 

  • Lin, J., Nishino, K., Roberts, M. C., Tolmasky, M., Aminov, R. I., & Zhang, L. (2015). Mechanisms of antibiotics resistance. Frontiers in Microbiology, 6(34), 1–3.

  • Mangano, S., Michaud, L., Caruso, C., & Lo Giudice, A. (2014). Metal and antibiotic resistance in psychotropic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology, 37, 227–235.

    Google Scholar 

  • Marinescu, F., Chifiriuc, M. C., Măruțescu, L., Ilie, M., Savin, I., Anghel, A., Marcuș, I., Tociu, C., & Marcu, E. (2017). Prevalence of heavy metal and antibiotic resistance in bacterial isolates from wastewater and receiving aquatic environments. Biointerface Research in Applied Chemistry, 7(5), 2140–2144.

    CAS  Google Scholar 

  • Martinez, J. L., Coque, T. M., & Baquero, F. (2009). What is a resistance gene? Ranking risk in resistomes. Nature Review Microbiology, 13(2), 116–123.

    Google Scholar 

  • Miranda, C. D., & Castillo, G. (1998). Resistance to antibiotic and heavy metals of motile aeromonads from Chilean freshwater. The Science of the Total Environment, 224, 167–176.

    CAS  Google Scholar 

  • Nair, S., Chandramohan, D., & Loka Bharathi, P. A. (1992). Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water Research, 26(4), 431–434.

    CAS  Google Scholar 

  • Najiah, M., Lee, S. W., Wendy, W., Teel, L. W., Nadirah, M., & Faizah, S. H. (2009). Antibiotic resistance and heavy metals tolerance in gram-negative bacteria from diseased American bullfrog (Rana catesbeiana) cultured in Malaysia. Agricultural Science in China, 8(10), 1270–1275.

    Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

  • NOAA, 2009. NOAA technical memorandum NOS-OR&R-30. In: Arthur, C., Baker, J., Bamford, H. (Eds.), Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, Tacoma, WA, Sept 9-11, 2008. NOAA: Silver Spring, MD.

  • O’Donovan, S.O., Mestre, M.C., Abel, S., Fonseca, T.G., Carteny, C.C., Cormier, B., Keiter, S.H., Bebianno, M.J. (2018). Ecotoxicological effects of chemical contaminants adsorbed to microplastics in the clam Scrobicularia plana. Frontiers in Marine Science,143.

  • Pagano, G., Aliberti, F., Guida, M., Oral, R., Siciliano, A., Trifuoggi, M., & Tommasi, F. (2015). Rare earth elements in human and animal health: state of art and research priorities. Environmental Research, 142, 215–220.

    CAS  Google Scholar 

  • Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 216–314.

  • Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Cold Spring Harbor Perspectives in Medicine, 6(6), a025197.

    Google Scholar 

  • Rahman, Z., & Sing, V. P. (2018). Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi Journal of Biological Sciences, 25, 1687–1695.

    CAS  Google Scholar 

  • Revel, M., Châtel, A., & Mouneyrac, C. (2018). Micro(nano)plastics: A threat to human health? Current. Opinion. Environmental Science and. Health, 1, 17–23.

    Google Scholar 

  • Sabry, S. A., Ghozlan, H. A., & Abou-Zeid, D. M. (1997). Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. Journal of Applied Microbiology, 82, 245–252.

    CAS  Google Scholar 

  • Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3(399), 1–10.

    Google Scholar 

  • Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., & Mc Arthur, J. V. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 8(9), 1510–1514.

    CAS  Google Scholar 

  • Stokes, H. W., Nesbo, C. L., Holley, M., Bahl, M. I., Gillings, M. R., & Boucher, Y. (2006). Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. Journal of Bacteriology., 188, 5722–5730.

    CAS  Google Scholar 

  • Summers, A.O., Wireman, J., Vimy, M.J., Lorscheider, F.L., Marshall, B., Levy, S.B., Bennett, S.B.S., Billard, L. 1993. Mercury released from dental ‘silver’ fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrobial Agents and Chemotheraphy, 37, 825–834.

  • Suzuki, S., Kimura, M., Agusa, T., & Rahman, H. M. (2012). Vanadium accelerates horizontal transfer of tet(M) gene from marine Photobacterium to Escherichia coli. FEMS Microbiology Letters, 336, 52–56.

    CAS  Google Scholar 

  • Suzuki, S., Pruden, A., Virta, M., Zhang, T. (2017) Editorial: Antibiotic Resistance in Aquatic Systems. Frontiers Microbiology, 8(14), 1–3. https://doi.org/10.3389/fmicb.2017.00014.

  • Tazzyman, S. J., & Bonhoeffer, S. (2014). Why there are no essential genes on plasmids. Molecular Biology and Evolution, 32, 3079–3088.

    Google Scholar 

  • Vignaroli., C., Pasquaroli, S., Citterio, C., Di Cesare, A., Mangiaterra, G., Fattorini, D., & Biavasco, F. (2018). Antibiotic and heavy metal resistance in enterococci from coastal marine sediment. Environmental Pollution, 237, 406–413.

  • Wireman, J., Liebert, C. A., Smith, T., & Summers, A. O. (1997). Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Applied Environmental Microbiology, 63(11), 4494–4503.

    CAS  Google Scholar 

  • Wright, S. L., Thompson, R. C. & Galloway, T. S. (2013) ‘The physical impacts of microplastics on marine organisms: A review’. Environmental Pollution, 178, 483–492.

  • Zhang, M., Wan, K., Zeng, J., Lin, W., Ye, C., Yu X. (2020). Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water. Environment International, 105351.

Download references

Acknowledgments

The author wishes to thank the two reviewers who greatly improved the manuscript quality. Thanks to Filippo Brusco for helping to design graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Squadrone.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squadrone, S. Water environments: metal-tolerant and antibiotic-resistant bacteria. Environ Monit Assess 192, 238 (2020). https://doi.org/10.1007/s10661-020-8191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8191-8

Keywords

Navigation