Skip to main content
Log in

The ground-level ozone concentration in beech (Fagus sylvatica L.) forests in the West Carpathian Mountains

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The amount of ground-level ozone in beech forests depends not only on the pollution intensity but also on the other environmental factors. This paper presents the analysis of the concentrations of ground-level ozone during the growing season (April–September) of beech trees, which represent the main objects modifying the microclimate conditions inside the forest. The research was localized in the Kremnické vrchy Mountains in Slovakia and realized during the period of 2004–2013. The study was carried out on four research plots with different stand structure which was caused by various intensities of cuts. Our results showed that the maximum concentration of ozone during this period was observed on the plot where the original beech stand (without management intervention) grown—maximal concentration reached the values from 44.0 to 50.0 ppb (in the sub-periods 2004–2008 and 2009–2013, respectively). On the other hand, the minimum concentration, 14.0 ppb, was found immediately after the cutting in 2004 on the plot, where all adult trees were removed. A similar course was found within average values of the ozone concentration on the research plots. Despite the fact that the results did not confirm significant differences among the plots, temporal trend showed an increasing concentration of ozone on all plots during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustaitis, A., Jasineviciene, D., Girgzdiene, R., Kliucius, A., Marozas. V. (2012). Sensitivity of beech trees to global environmental changes at most north-eastern latitude of their occurrence in Europe. ScientificWorldJournal , PMC3354641.

  • Badea, O., Neagu, S., Bytnerowicz, A., Silaghi, D., Barbu, I., Iacoban, C., Popescu, F, Andrei, M., Preda, E., Iacob, C., Dumitru, I., Iuncu , H., Vezeanu, C., & Huber, V. (2011). Long-term monitoring of air pollution effects on selected forest ecosystems in the Bucegi-Piatra Craiului and Retezat Mountains, southern Carpathians (Romania). iForest - Biogeosciences and Forestry, 4 (2), 49–60.

  • Barna, M. (2015). Productivity and functionig of the beech ecosystem: Ecological Experimental Station-Kremnické vrchy Mts. (Western Carpathians). Lesnícky časopis - Forestry Journal, 61, 252–261.

    Google Scholar 

  • Barna, M., & Bošela, M. (2015). Tree species diversity change in natural regeneration of a beech forest under different management. Forest Ecology and Management, 342, 93–102.

    Google Scholar 

  • Bičárová, S., Sitková, Z., & Pavlendová, H. (2016). Ozone phytotoxicity in Western Carpathian Mountains in Slovakia. Lesnícky časopis – Forestry Journal, 62(2), 77–88.

    Google Scholar 

  • Borowiak, K. (2013). Effect of tropospheric ozone on photosynthetic activity of ozone-resistant and ozone-sensitive test plants (Nicotiana tabacum L., Phaseolus vulgaris L.). Polish Journal of Ecology, 61, 693–703.

    CAS  Google Scholar 

  • Cailleret, M., Ferretti, M., Gessler, A., Rigling, A., & Schaub, M. (2018). Ozone effects on European forest growth-towards an integrative approach. Journal of Ecology, 106(4), 1377–1389.

    CAS  Google Scholar 

  • Chevalier, A., Gheusi, F., Delmas, R., Ordonez, C., Sarrat, C., Zbinden, R., Thouret, V., Athier, G., & Cousin, J. M. (2007). Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmospheric Chemistry and Physics Discussions, 7, 1327–1356.

    Google Scholar 

  • EEA. (2010). Air quality in Europe – report. Copenhagen, Denmark: EEA.

    Google Scholar 

  • EHK. (2004). Mapping manual revision. UN/ECE convention on long-range transboundary air pollution. Manual on the methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. URL: http://www.icpmapping.org.

  • Finlayson-Pitts, B. J., & Pitts, J. N. (2000). Chemistry of the upper and lower atmosphere. San Diego: Academic Press.

    Google Scholar 

  • Fuhrer, J., & Acherman, B. (1994). Critical levels for ozone. A UN/ECE workshop report, Schriftenreiche der FAC No.16.

  • Fuhrer, J., Skärby, L., & Ashmore, M. R. (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97, 91–106.

    CAS  Google Scholar 

  • Fuhrer, J., Val Martin, M., Mills, G., Heald, C. L., Harmens, H., Hayes, F., Sharps, K., Bender, J., & Ashmore, M. R. (2016). Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecology and Evolution, 6, 8785–8799.

    Google Scholar 

  • Gerosa, G., Ferretti, M., Bussotti, F., & Rocchini, D. (2007). Estimates of ozone AOT40 from passive sampling in forest sites in South-Western Europe. Environmental Pollution, 145, 629–635.

    CAS  Google Scholar 

  • Greguš, C., & Kellerová, D. (2002). Evaluation of the long term development of forest management in Slovakia up to year 2000. Lesoprojekt: Zvolen. Institute of Forest Ecology of the Slovak Academy of Sciences.

    Google Scholar 

  • Guerreiro, C., Foltescu, V., & de Leeuw, F. (2014). Air quality status and trends in Europe. Atmospheric Environment, 98, 376–384.

    CAS  Google Scholar 

  • Hůnová, I., & Schreiberová, M. (2012). Ambient ozone phytotoxic potential over the Czech forests as assessed by AOT40. iForest, 5, 153–162.

    Google Scholar 

  • Hůnová, I., Stoklasová, P., Schovánková, J., & Kulasová, A. (2016). Spatial and temporal trends of ozone distribution in the Jizerské hory Mountains of the Czech Republic. Environmental Science and Pollution Research, 23(1), 377–387.

    Google Scholar 

  • Jonson, J. E., Simpson, D., Fagerli, H., & Solberg, S. (2006). Can we explain the trends in European ozone levels? Atmospheric Chemistry and Physics Discussions, 6, 51–66.

    CAS  Google Scholar 

  • Kellerová, D. (2002). Surface ozone at the beech ecological experimental station Kremnické vrchy Mts. Ekológia (Bratislava), 21, 26–32.

    Google Scholar 

  • Krupa, S. V., & Legge, A. H. (2000). Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective. Environmental Pollution, 107, 31–45.

    CAS  Google Scholar 

  • Lapin, M., Faško, P., Melo, M., Šťastný, P., & Tomlain, J. (2002). Climatic regions. In L. Miklós (Ed.), Landscape atlas of the Slovak Republic (1st ed.). Bratislava: MŽP.

    Google Scholar 

  • Mahapatra, A. (2010). Prediction of daily ground-level ozone concentration maxima over New Delhi. Environmental Monitoring and Assessment, 170, 159–170.

    CAS  Google Scholar 

  • Mangoni, M., & Buffoni, A. (2008). Status and trend of ground-level ozone at the CONECOFOR plots, 1996–2005. Annals of Silvicultural Research, 34, 85–100.

    Google Scholar 

  • Matyssek, R., Wieser, G., Calfapietra, C., de Vries, W., Dizengremel, P., Ernst, D., Jolivet, Y., Mikkelsen, T. N., Mohren, G. M. J., Le Thiec, D., Tuovinen, J. P., Weatherall, A., & Paoletti, E. (2012). Forests under climate change and air pollution: gap in understanding and future directions for research. Environmental Pollution, 160, 57–65.

    CAS  Google Scholar 

  • Meleux, F., Solmon, F., & Giorgi, F. (2007). Increase in summer European ozone amounts due to climate change. Atmospheric Environment, 41(35), 7577–7587.

    CAS  Google Scholar 

  • Melkonyan, A., & Kuttler, W. (2012). Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment, 60, 316–326.

    CAS  Google Scholar 

  • Microsoft Corporation. (2016). Microsoft Excel. Retrieved from https://office.microsoft.com/excel.

  • Paoletti, E. (2007). Ozone impacts on forests. CAB Reviews: Perspectives in Agriculture Veterinary Science Nutrition and Natural Resource, 68, 1–13.

    Google Scholar 

  • Paoletti, E., & Manning, W. J. (2007). Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution, 150(1), 85–95.

    CAS  Google Scholar 

  • Paoletti, E., Manning, W. J., Ferrara, A. M., & Tagliaferro, F. (2011). Soil drench of ethylenediurea (EDU) protects sensitive trees from ozone injury. iForest, 4, 66–68.

    Google Scholar 

  • Pavón-Domínguez, P., Jiménez-Hornero, F. J., & Gutiérrez de Ravé, E. (2013). Evaluation of the temporal scaling variability in forecasting ground-level ozone concentrations obtained from multiple linear regressions. Environmental Monitoring and Assessment, 185, 3853–3866.

    Google Scholar 

  • Pawlak, I., & Jarosławski, J. (2014). The influence of selected meteorological parameters on the concentration of surface ozone in the central region of Poland. Atmosphere-Ocean , 126–139.

  • Pichler, V. (2003). Production ecology and environmental aspects of the soil water regime due to change of beech ecosystem density. TU Zvolen: Habilitation [in Slovak].

    Google Scholar 

  • Pohlert, T., Hillebrand, G., & Breitung, V. (2011). Trends of persistent organic pollutants inthe suspended matter of the River Rhine. Hydrological Processes, 25, 3803–3817.

    CAS  Google Scholar 

  • Pusede, S. E., Steiner, A. L., & Cohen, R. C. (2015). Temperature and recent trends in the chemistry of continental surface ozone. Chemisty Review, 115, 3898–3918.

    CAS  Google Scholar 

  • R Core Team. (2014). R: a language and environment for statistical computing. In Roundation for statistical computing. Vienna: Austria. URL http://www.R-project.org/.

    Google Scholar 

  • Sanz, M. J., Calatayud, V., & Sanchez-Peña, G. (2007). Measures of ozone concentration using passive sampling in forests of South Western Europe. Environmental Pollution, 145, 620–628.

    CAS  Google Scholar 

  • Serengil, Y., Augustaitis, A., Bytnerowicz, A., Gruľko, N., Kozovitz, A. R, Matyssek, R., Müller-Starck, G., Schaub, M., Wieser, G., & Coskun, A. A. (2011). Adaptation of forest ecosystems to air pollution and climate change a global assessment on research priorities. iForest, 4, 44–48.

  • Schaub, M., Calatayud, V., Ferretti, M., Brunialti, G., Lövblad, G., Krause, G., & Sanz, M. J. (2016). Part XV: Monitoring of Air Quality. In: UNECE ICP Forests Programme Coordinating Centre (Ed) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Eberswalde, Germany: Thünen Institute of Forest Ecosystems. Retrieved from http://www.icp-forests.org/Manual.htm.

  • Schaub, M., Wieser, G., Coskun, A. A., & Paoletti, E. (2011). Adaptation of forest ecosystems to air pollution and climate change a global assessment on research priorities. iForest, 4, 44–48.

    Google Scholar 

  • Schieber, B. (2006). Spring phenology of European beech (Fagus sylvatica L.) in submountain beech forest stand with various stocking between 1995-2004. Journal of Forest Science, 52, 208–216.

    Google Scholar 

  • Shmi. (2009). Assessment of air quality in the Slovak Republic – 2007. Bratislava: SHMI [in Slovak].

    Google Scholar 

  • Shmi. (2013). Regional program to improve air quality in the Slovak Republic for ground-level ozone. Bratislava: MŽP [in Slovak].

    Google Scholar 

  • Sicard, P., De Marco, A., Dalstein-Richier, L., Tagliaferro, F., Renou, C., & Paoletti, E. (2016). An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. The Science of the Total Environment, 541, 729–741.

    CAS  Google Scholar 

  • Silaghi, D., & Badea, O. (2012). Monitoring of ozone in selected forest ecosystems in Southern Carpathian and Romanian Intensive Monitoring Network (level II). Journal of Environmental Monitoring, 6, 1710–1717.

    Google Scholar 

  • Simpson, D., Arneth, A., Mills, G., Solberg, S., & Uddling, J. (2014). Ozone - the persistent menace: interactions with the N cycle and climate change. Current Opinion in Environmental Sustainability, 9–10, 9–19.

    Google Scholar 

  • Werner, H., Kirchner, M., Welzl, G., & Hangartner, M. (1999). Ozone measurements along vertical transects in the Alps. Environmental Science and Pollution Research, 6, 83–87.

    CAS  Google Scholar 

  • Xu, X., Zhang, T., & &Su, Y. (2019). Temporal variations and trend of ground-level ozone based onlong-term measurements in Windsor, Canada. Atmospheric Chemistry and Physics, 19, 7335–7345.

Download references

Acknowledgements

The authors thank Stanislav Kunda and Dagmar Kúdelová for the translation of the paper.

Funding

This investigation was supported by the Grant Agency VEGA of the Slovak Academy of Science No. 2/0120/17.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Rastislav Janík.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janík, R., Kubov, M. & Schieber, B. The ground-level ozone concentration in beech (Fagus sylvatica L.) forests in the West Carpathian Mountains. Environ Monit Assess 192, 233 (2020). https://doi.org/10.1007/s10661-020-8176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8176-7

Keywords

Navigation