Skip to main content

Advertisement

Log in

Landscape-scale approaches for enhancing biological pest control in agricultural systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over the last decades, land management options have been investigated that aim at enhancing services to agriculture delivered by biodiversity and its associated biotic interactions. Such services can be promoted through land management strategies ranging from in-field single agricultural practices, long-term strategies compiling these agricultural practices at the crop rotation scale, to management strategies at the landscape scale. In this paper, we provide an overview of the land management options that can be implemented at multiple scales, with a specific focus on the provision of one service that is key in agriculture, i.e. pest control. We present existing knowledge and highlight current gaps and limitations in our understanding of pest control response to land management. Based on this analysis, we propose two promising and complementary research approaches that could help filling existing knowledge gaps and provide guidelines for designing landscapes for agroecological services: (1) landscape monitoring networks (LMN), based on long-term monitoring of ecological and managerial processes within sets of landscapes located in contrasted production contexts; (2) agroecological system experiments (ASE), which design and assess combinations of land management options at multiple embedded spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bagavathiannan, M. V., Begg, G. S., Gulden, R. H., & Van Acker, R. C. (2012). Modelling the dynamics of feral alfalfa populations and its management implications. PLoS ONE, 7, e39440.

    Article  CAS  Google Scholar 

  • Begg, G. S., Cook, S., Dye, M., Ferrante, M., Frank, P., Lavigne, C., Lövei, G., Pell, J., Petit, S., Quesada, N., Ricci, B., & Birch, N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145–158.

    Article  Google Scholar 

  • Blitzer, E. J., Dormann, C. F., Holzschuh, A., Klein, A. M., Rand, T. A., & Tscharntke, T. (2012). Spillover of functionally important organisms between managed and natural habitats. Agriculture Ecosystems & Environment, 146, 34–43.

    Article  Google Scholar 

  • Bretagnolle, V., Berthet, E., Gross, N., Gauffre, B., Plumejeaud, C., Houte, S., Badenhausser, I., Monceau, K., Allier, F., Monestiez, P., & Gaba, S. (2018). Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform. Science of the Total Environment, 627, 822–834.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

    Article  CAS  Google Scholar 

  • Chaplin-Kramer, et al. (2011). A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 14, 922–932.

    Article  Google Scholar 

  • Cordeau, S., Guillemin, J.-P., Reibel, C., & Chauvel, B. (2015a). Weed species differ in their ability to emerge in no-till systems that include cover crops. The Annals of Applied Biology, 166, 444–455.

    Article  Google Scholar 

  • Cordeau, S., Deytieux, V., Lemanceau, P., & Marget, P. (2015b). Towards the establishment of an experimental research unit on Agroecology in France. Aspects of Applied Biology 128: Valuing Long-Term sites and Experiments for Agriculture and Ecology, 271-273.

  • Dassou, A. G., & Tixier, P. (2016). Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis. Ecology and Evolution, 25, 1143–1153.

    Article  Google Scholar 

  • Drinkwater, L. E. (2002). Cropping systems research: reconsidering agricultural experimental approaches. Hort Technology, 12, 355–361.

    Article  Google Scholar 

  • Dunning, J. B., Danielson, B. J., & Pulliam, H. R. (1992). Ecological processes that affect populations in complex landscapes. Oikos, 65, 169–175.

    Article  Google Scholar 

  • Duru, M., Therond, O., Martin, G., Martin-Clouaire, R., Magne, M., Justes, E., et al. (2015). How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agronomy for Sustainable Development, 35, 1259–1281. https://doi.org/10.1007/s13593-015-0306-1.

    Article  Google Scholar 

  • Fabre, F., Rousseau, E., Mailleret, L., & Moury, B. (2012). Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 193, 1064–1075.

    Article  Google Scholar 

  • Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14, 101–112.

    Article  Google Scholar 

  • Firbank, L. G., Petit, S., Smart, S. M., Blain, A., & Fuller, R. J. (2008). Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philosophical Transactions of the Royal Society - Ser B - Biological Sciences, 363, 777–787.

    Article  Google Scholar 

  • Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Pärt, T., Bretagnolle, V., Plantegenest, M., Clement, L. W., Dennis, C., Palmer, C., Oñate, J. J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., Goedhart, P. W., & Inchausti, P. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on farmland. Basic and Applied Ecology, 11, 97–105.

    Article  CAS  Google Scholar 

  • Gravesen, L., 2003. The Treatment Frequency Index: an indicator for pesticide use and dependency as well as overall load on the environment. Reducing pesticide dependency in Europe to protect health, environment and biodiversity, Copenhagen, Pesticides Action Network Europe (PAN), Pure Conference.

  • Holland, J. M., Bianchi, F. J. J. A., Entling, M. H., Moonen, A.-C., Smith, B. M., & Jeanneret, P. (2016). Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Management Science, 72, 1638–1651.

    Article  CAS  Google Scholar 

  • Karp, D. S., Chaplin-Kramer, R., Meehan, T., Martin, E., DeClerck, F., Grab, H., et al. (2018). Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 115, E7863–E7870. https://doi.org/10.1073/pnas.1800042115.

    Article  CAS  Google Scholar 

  • Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1–12.

    Article  Google Scholar 

  • Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201.

    Article  CAS  Google Scholar 

  • Lechenet, M., Bretagnolle, V., Bockstaller, C., Boissinot, F., Petit, M.-S., Petit, S., & Munier-Jolain, N. M. (2014). Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PLoS ONE, 9, e97922.

    Article  CAS  Google Scholar 

  • Lechenet, M., Deytieux, V., Antichi, D., Aubertot, J.-N., Bàrberi, P., Bertrand, M., Cellier, V., Charles, R., Colnenne-David, C., Dachbrodt-Saaydeh, S., Debaeke, P., Doré, T., Farcy, P., Fernandez-Quintanilla, C., Grandeau, G., Hawes, C., Jouy, L., Justes, E., Kierzek, R., Kudsk, P., Lamichhane, J. R., Lescourret, F., Mazzoncini, M., Melander, B., Messéan, A., Moonen, A. C., Newton, A. C., Nolot, J. M., Panozzo, S., Retaureau, P., Sattin, M., Schwarz, J., Toqué, C., Vasileiadis, V. P., & Munier-Jolain, N. (2017). Diversity of methodologies to experiment Integrated Pest Management in arable cropping systems: analysis and reflections based on a European network. European Journal of Agronomy, 83, 86–99.

    Article  Google Scholar 

  • Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications, 3, 92–122.

    Article  Google Scholar 

  • Malezieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., et al. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29, 43–62.

    Article  Google Scholar 

  • Marshall, E. J. P., & Moonen, A. C. (2002). Field margins in northern Europe: their functions and interactions with agriculture. Agriculture Ecosystems and Environment, 89, 5–21.

    Article  Google Scholar 

  • Massol, F., & Petit, S. (2013). Interaction networks in agricultural landscape mosaics. Advances in Ecological Research, 49, 272–338.

    Google Scholar 

  • Médiène, S., Valantin-Morison, M., Sarthou, J. P., De Tourdonnet, S., Gosme, M., Bertrand, M., et al. (2011). Agroecosystem management and biotic interactions: a review. Agronomy for Sustainable Development, 31, 491–514.

    Article  Google Scholar 

  • Meentemeyer, R. K., Haas, S. E., & Václavík, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379–402.

    Article  CAS  Google Scholar 

  • Meynard, J. M., Doré, T., & Lucas, P. (2003). Agronomic approach: cropping systems and plant diseases. CR Biologie, 326, 37–46. https://doi.org/10.1016/S1631-0691(03)00006-4.

    Article  Google Scholar 

  • Oliver, T. H., Isaac, N. J. B., August, T. A., Woodcock, B. A., Roy, D. B., & Bullock, J. M. (2015). Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 6, 10122. https://doi.org/10.1038/ncomms10122.

    Article  CAS  Google Scholar 

  • Östman, Ö. (2004). The relative effects of natural enemy abundance and alternative prey abundance on aphid predation rates. Biological Control, 30, 281–287. https://doi.org/10.1016/j.biocontrol.2004.01.015.

    Article  Google Scholar 

  • Petit, S., Alignier, A., Colbach, N., Joannon, A., & Thenail, C. (2013). Weed dispersal by farming activities across spatial scales. Agronomy for Sustainable Development, 33, 205217. https://doi.org/10.1007/s13593-012-0095-8.

    Article  Google Scholar 

  • Petit, S., Munier-Jolain, N. M., Bretagnolle, V., Bockstaller, C., Gaba, S., Mézière, D., et al. (2015). Ecological intensification through pesticide reduction: weed control, weed biodiversity and sustainability in arable farming. Environmental Management, 56, 1078–1090.

    Article  Google Scholar 

  • Petit, S., Trichard, A., Biju-Duval, L., McLaughlin, O., & Bohan, D. A. (2017). Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agriculture, Ecosystems & Environment, 240, 45–53.

    Article  Google Scholar 

  • Petit, S., Cordeau, S., Chauvel, B., Bohan, D. A., Guillemin, J. P., & Steinberg, C. (2018). Biodiversity-based options for arable weed management: a review. Agronomy for Sustainable Development, 38, 48.

    Article  Google Scholar 

  • Polis, G. A., Anderson, W. B., & Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.

    Article  Google Scholar 

  • Rand, T. A., Tylianakis, J. M., & Tscharntke, T. (2006). Spill-over edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 9, 603–614.

    Article  Google Scholar 

  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32, 273–303.

    Article  Google Scholar 

  • Ricci, B., Lavigne, C., Alignier, A., Aviron, S., Biju-Duval, B. J. C., Choisis, J.-P., Franck, P., Joannon, A., Ladet, S., Mezerette, F., Plantegenest, M., Savary, G., Thomas, C., Vialatte, A., & Petit, S. (2019). Local pesticide use intensity conditions landscape effects on biological pest control. Proceedings of the Royal Society B: Biological Sciences, 286, 20182898. https://doi.org/10.1098/rspb.2018.2898.

    Article  CAS  Google Scholar 

  • Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng', A., Potts, S. G., & Viana, B. F. (2008). Landscape effects on crop pollination services: are there general patterns? Ecology Letters, 11, 499–515.

    Article  Google Scholar 

  • Rusch, A., Valentin-Morison, M., Sarthou, J.-P., & Roger-Estrade, J. (2010). Biological control of insect pests in agroecosystems: effects of crop management, farming system, and seminatural habitats at the landscape scale: a review. Advances in Agronomy, 109, 219–259.

    Article  Google Scholar 

  • Sébillotte M. 1990. Système de culture, un concept opératoire pour les agronomes. Les systèmes de culture. Combe L. and Picard D. Paris, INRA. 165-196.

  • Sigsgaard, L., & Jacobsen, S. K. (2017). Functional agrobiodiversity- a novel approach to optimize pest control in fruit production. Landscape Management for Functional Biodiversity IOBC-WPRS Bulletin, 122(122), 26–28.

    Google Scholar 

  • Stoate, C., Baldi, A., Beja, P., Boatman, N. D., Herzon, I., van Doorn, A., et al. (2009). Ecological impacts of early 21st century agricultural change in Europe - a review. Journal of Environmental Management, 91, 22–46.

    Article  CAS  Google Scholar 

  • Teasdale, J. R. (1996). Contribution of cover crops to weed management in sustainable agricultural systems. Journal of Production Agriculture, 9, 475–479.

    Article  Google Scholar 

  • Thenail, C., Joannon, A., Capitaine, M., Souchère, V., Mignolet, C., Schermann, N., di Pietro, F., Pons, Y., Gaucherel, C., Viaud, V., & Baudry, J. (2009). The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agriculture, Ecosystems & Environment, 131, 207–219.

    Article  Google Scholar 

  • Thies, C., & Tscharntke, T. (1999). Landscape structure and biological control in agroecosystems. Science, 285, 893–895.

    Article  CAS  Google Scholar 

  • Trichard, A., Alignier, A., Biju-Duval, L., & Petit, S. (2013). The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic and Applied Ecology, 14, 235–245.

    Article  Google Scholar 

  • Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand, T. A., Tylianakis, J. M., Nouhuys, S. ., & Vidal, S. (2007). Conservation biological control and enemy diversity on a landscape scale. Biological Control, 43, 294–309.

    Article  Google Scholar 

  • Tscharntke, T., Karp, D. S., Chaplin-Kramer, R., Batary, P., DeClerck, F., Gratton, C., et al. (2016). When natural habitat fails to enhance biological pest control: five hypotheses. Biological Conservation, 204, 449–458.

    Article  Google Scholar 

  • Vasseur, C., Joannon, A., Aviron, S., Burel, F., Meynard, J.-M., & Baudry, J. (2013). The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture, Ecosystems & Environment, 166, 3–14.

    Article  Google Scholar 

  • Veres, A., Petit, S., Conord, C., & Lavigne, C. (2013). Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems & Environment, 166, 110–117.

    Article  Google Scholar 

  • Verret, V., Gardarin, A., Pelzer, E., Médiène, S., Makowski, D., & Valantin-Morison, M. (2017). Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Research, 204, 158–168.

    Article  Google Scholar 

  • Wissinger, S. A. (1997). Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biological Control, 10, 4–15.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all members of the SEBIOPAG consortium who have contributed to the set-up and maintenance of the network since 2013, in particular Claire Lavigne and Pierre Franck (Avignon), Benoit Ricci, Luc Biju-Duval (Dijon), Stéphanie Aviron, Audrey Alignier, Alexandre Joannon, Manuel Plantegenest (Rennes), Aude Vialatte, Sylvie Ladet, Gérard Balent (Toulouse). The SEBIOPAG network is financially supported by INRA (DS Environment), via the Agence Française de la Biodiversité AFB (project FRB-EcoPhyto SEBIOPAG-Phyto) and associated projects conducted locally by members of the SEBIOPAG consortium.

The CA-SYS platform is coordinated by Stephane Cordeau and Violaine Deytieux. The authors thank the CA-SYS team, including in addition to the authors Judith Burstin, Philippe Lemanceau, Nicolas Munier-Jolain, Christian Steinberg (UMR Agroécologie—INRA Dijon) and Pascal Marget (UE Domaine d’Epoisses—INRA Dijon). We also acknowledge all the staff from the experimental farm that every day they strive for making CA-SYS existing. We thank all the people who took part of the workshops to design cropping systems and semi-natural habitats. The CA-SYS platform is financially supported by INRA, the French „Investissements d’Avenir“ programme and the project ISITE-BFC (contract ANR-15-IDEX-03), the French ministries for agriculture and environment and the Agence Française de la Biodiversité AFB Ecophyto plan (DEPHY Expe II project ABC “Agroécologie en Bourgogne et Région Centre”), the Casdar projects RAID (Biological control of weeds) and Vancouver (Weeds management with cover crop).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Petit.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Managing Ecosystem Services and Biodiversity of Agricultural Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, S., Deytieux, V. & Cordeau, S. Landscape-scale approaches for enhancing biological pest control in agricultural systems. Environ Monit Assess 193 (Suppl 1), 75 (2021). https://doi.org/10.1007/s10661-020-08812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08812-2

Keywords

Navigation