Skip to main content

Advertisement

Log in

Summer season sea surface temperature changes in the Aegean Sea based on 30 years (1989–2019) of Landsat thermal infrared data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this research, sea surface temperature (SST) variability for the summer season in the Aegean Sea was analysed over a period of 30 years by using the Landsat thermal infrared bands. A total of 88 Landsat 5, 7, and 8 thermal infrared satellite images from June, July, and August were used for each year from 1989 to 2019. To estimate SST from the thermal infrared band data, thermal infrared sensor at-sensor spectral radiance, and thermal infrared sensor top-of-atmosphere brightness temperatures were used. SST pixel values were extracted from thermal images for the 3-month summer season of each year. In order to validate the findings, regression analysis was performed between the Mediterranean Sea Ultra High Resolution SST L4 data and Landsat data for the 2008–2019 period. Regression constant R-squared values were found to be 0.9672 for June, 0.9550 for July, 0.9634 for August, and 0.9634 for all summer seasons. It was calculated that the minimum value of the average SST was 18.44 ± 2.87 °C in 1992, and the maximum value of the average SST was 23.45 ± 0.70 °C in 2018. According to the Landsat data, over the past 30 years, the annual average SST changes were estimated to be 0.11 °C, and the total changes of average SST were estimated to be 3.19 ± 1.26 °C. As a result of the analysis and the validation, we can see that there is a rising trend in sea surface temperature in the Aegean Sea. However, it is difficult to determine whether this upward trend is related to global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banzon, V., Smith, T. M., Chin, T. M., Liu, C., & Hankins, W. (2016). A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth System Science Data, 8, 165–176. https://doi.org/10.5194/essd-8-165-2016.

    Article  Google Scholar 

  • Bertram, D. F., Mackas, D. L., & McKinnell, S. M. (2001). The seasonal cycle revisited: interannual variation and ecosystem consequences. Progress in Oceanography., 49, 283–307.

    Article  Google Scholar 

  • Bozkurt, D., & Sen, O. (2011). Precipitation in the Anatolian Peninsula: sensitivity to increased SSTs in the surrounding seas. Climate Dynamics, 36, 711–726. https://doi.org/10.1007/s00382-009-0651-3.

    Article  Google Scholar 

  • Brando, V. E., Braga, F., Zaggia, L., Giardino, C., Bresciani, M., Matta, E., Bellafiore, D., Ferrarin, C., Maicu, F., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Coluccelli, A., Russo, A., & Carniel, S. (2015). High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event. Ocean Science, 11, 909–920.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Barsi, J. A. (2007). Revised Landsat-5 thematic mapper radiometric calibration. IEEE Geoscience and Remote Sensing Letters., 4(3), 490–494.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113, 893–903.

    Article  Google Scholar 

  • Costello, M. J., Smith, M., & Fraczek, W. (2015). Correction to surface area and the seabed area, volume, depth, slope, and topographic variation for the World’s seas, oceans, and countries. Environmental Science and Technology., 49, 7071–7072.

    Article  CAS  Google Scholar 

  • Fisher, J. I., & Mustard, J. F. (2004). High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sensing of Environment, 90, 293–307.

    Article  Google Scholar 

  • Gentemann, C. L., Wentz, F. J., Mears, C. A., & Smith, D. K. (2004). In situ validation of tropical rainfall measuring mission microwave sea surface temperatures. Journal of Geophysical Research, 109, C04021. https://doi.org/10.1029/2003JC002092.

    Article  Google Scholar 

  • Gucel, M. U., & Sakalli, A. (2018). Analysing sea surface temperature change in Gulf of Iskenderun from 1982 to 2015. NESciences, 2018, 3(2), 159–168.

    Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004. https://doi.org/10.1029/2010RG000345.

    Article  Google Scholar 

  • Khalil, I., Atkinsona, P. M., & Challenorc, P. (2016). Looking back and looking forwards: Historical and future trends in seasurface temperature (SST) in the Indo-Pacific region from 1982 to 2100. International Journal of Applied Earth Observation and Geoinformation, 45, 14–26.

    Article  Google Scholar 

  • Laffoley, D., Baxter, J. M. (editors), (2016). Explaining ocean warming: causes, scale, effects and consequences. Full report. Gland: IUCN. 456 pp.

  • Luca, C., (2016). Semi-automatic classification plugin documentation. DOI: https://doi.org/10.13140/RG.2.2.29474.02242/1. 203p.

  • Nardelli, B.B., Tronconi, C,, Pisano, A., Santoleri, R., (2013). High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sens. Environ., *129*, 1-16, doi:10.1016 j.rse.2012.10.012.

  • Nikolakopoulos, G.K., Vaiopoulos, A.D., Skianis, G.A., (2003). Use of multitemporal remote sensing thermal data for the creation of temperature profile of Alfios River Basin. Conference: Geoscience and Remote Sensing Symposium, 2003. IGARSS ‘03. Proceedings. 2003 IEEE International.

  • Pastor, F., Valiente, J. A., & Palau, J. L. (2017). Sea surface temperature in the Mediterranean trends and spatial patterns (1982–2016). Pure and Applied Geophysics, 175, 4017–4029. https://doi.org/10.1007/s00024-017-1739-z.

    Article  Google Scholar 

  • Poulos, S. E., Drakopoulos, P. G., & Collins, M. B. (1997). Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. Journal of Marine Systems, 13, 225–244.

    Article  Google Scholar 

  • Ritchie, J.C., Cooper, C.M., (2001). Remote sensing techniques for determining water quality: application to TMDLs. In: TMDL Science Issues Conference, Water Environment Federation, Alexandria, VA. pp. 367–374.

  • Sakalli, A. (2017). Sea surface temperature change in the Mediterranean Sea under climate change: a linear model for simulation of the sea surface temperature up to 2100. Applied Ecology and Environmental Research, 15(1), 707–716.

    Article  Google Scholar 

  • Schmidt, G.A., Arndt, D., (2018). Annual Global analysis for 2017. News Conference January 2018, NOAA/NASA. 15p (https://www.giss.nasa.gov/research/news/20180118/NOAA-NASA_Global_Analysis-2017.pdf: accessed 15 April 2020).

  • Schott, J. R., Barsi, J. A., Nordgren, B. L., Raqueño, N. G., & Alwis, D. (2001). Calibration of Landsat thermal data and application to water resource studies. Remote Sensing of Environment, 78(1–2), 108–117.

    Article  Google Scholar 

  • Schott, J. R. (1982). An application of heat capacity mapping mission data: thermal bar studies of Lake Ontario. Journal of Applied Photographic Engineering, 8(3), 117–120.

    Google Scholar 

  • Shaltout, M., & Anders Omstedt, A. (2014). Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56(3), 411–443.

    Article  Google Scholar 

  • Skliris, N., Sofianos, S. N., Gkanasos, A., Axaopoulos, A., Mantziafou, A., & Vervatis, V. (2011). Long-term sea surface temperature variability in the Aegean Sea. Advances in Oceanography and Limnology, 2(2), 125–139.

    Article  Google Scholar 

  • Syariza, M.A., Jaelania, L.M., Subehie, L., Pamungkasb, A., Koenhardonoc, E.S., Sulisetyonod, A., (2015). Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: a preliminary algorithm. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W4, 2015 Joint International Geoinformation Conference 2015, 28–30 October 2015, Kuala Lumpur, Malaysia.

  • Topouzelis, K., Varnava, S., Georgiou, A., (2012). Spatial and temporal mapping of SST in East Mediterranean (Aegean Sea) during 2005-2008. Conference: Geoscience and Remote Sensing Symposium, 2012. IGARSS ‘12. Proceedings. 2012 IEEE International. pp.2617–2620.

  • Tsikliras, A. C., Peristeraki, P., Tserpes, G., & Stergiou, K. I. (2015). Mean temperature of the catch (MTC) in the Greek Seas based on landings and survey data. Frontiers in Marine Science, 2, 23. https://doi.org/10.3389/fmars.2015.00023.

    Article  Google Scholar 

  • Turuncoglu, U. U. (2015). Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature. Climate Dynamics., 44, 1993–2015. https://doi.org/10.1007/s00382-014-2346-7.

    Article  Google Scholar 

  • USGS, (2016). Landsat 8 (L8) data users handbook version 2. Department of the Interior U.S. Geological Survey. 106p.

  • Uncles, R. J., & Stephens, J. A. (2001). The annual cycle of temperature in a temperate estuary and associated heat fluxes to the coastal zone. Journal of Sea Research., 46, 143–159.

    Article  Google Scholar 

  • Vlahakis, G. N., & Pollatou, R. S. (1993). Temporal variability and spatial distribution of sea surface temperatures in the Aegean Sea. Theoretical Applied. Climatology., 47, 15–23.

    Article  Google Scholar 

  • Xing, Q., Chen, C., & Shi, P. (2006). Method of integrating Landsat-5 and Landsat-7 data to retrieve sea surface temperature in coastal waters on the basis of local empirical algorithm. Ocean Science Journal, 41(2), 97–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Kuleli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleli, T., Bayazit, S. Summer season sea surface temperature changes in the Aegean Sea based on 30 years (1989–2019) of Landsat thermal infrared data. Environ Monit Assess 192, 716 (2020). https://doi.org/10.1007/s10661-020-08689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08689-1

Keywords

Navigation