Skip to main content
Log in

Determination of total and lung-deposited particle surface area concentrations, in central Athens, Greece

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Numerous health studies have linked the exposure to particulate matter with adverse health effects, while there is an increasing scientific interest in the particle metrics of surface area (SA) and lung-deposited SA (LDSA) concentration. In the present study, two integrated SA estimation methods, both based on widely used instrumentation, were applied at an urban traffic environment in Athens for a 6-month period. The first estimation method used the size distribution by number to estimate SA (average SA1 669.3 ± 229.0 μm2 cm−3), while the second method used a simple inversion scheme that incorporates number and mass concentrations (average SA2 1627.9 ± 562.8 μm2 cm−3). In pairwise comparisons, SA2 levels were found two times greater than the corresponding SA1, but exhibited a strong correlation (r = 0.73). SA1 and SA2 concentrations correlated well with the traffic-related pollutants NOx (r = 0.64 and 0.78) and equivalent black carbon (r = 0.53 and 0.51). The diurnal variation of SA1 concentrations by size range indicated traffic as a major controlling factor. Estimated LDSA (53.9 μm2 cm−3 on average) concentrations were also clearly affected by anthropogenic emissions with more pronounced associations in the 0.01–0.4 μm range (r = 0.66 with NOx and r = 0.65 with equivalent black carbon). Validating estimated LDSA through simultaneous measurements with a reference instrument revealed that the estimation method underestimates LDSA by a factor between 2 and 3, exhibiting, however, a high correlation (r = 0.79). Overall, the performance of estimation methods appear satisfactory and indicate that a trustworthy assessment of the temporal variability of SA and LDSA concentration metrics can be provided in real time, on the basis of relatively lower-cost instrumentation, especially in view of recent advances in particle sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agus, E. L., Young, D. T., Lingard, J. J. N., Smalley, R. J., Tate, J. E., Goodman, P. S., & Tomlin, A. S. (2007). Factors influencing particle number concentrations, size distributions and modal parameters at a roof-level and roadside site in Leicester, UK. Science of the Total Environment, 386(1-3), 65–82.

    CAS  Google Scholar 

  • Argyropoulos, G., Samara, C., Voutsa, D., Kouras, A., Manoli, E., Voliotis, A., Tsakis, A., Chasapidis, L., Konstandopoulos, A. G., & Eleftheriadis, K. (2016). Concentration levels and source apportionment of ultrafine particles in road microenvironments. Atmospheric Environment, 129, 68–78.

    CAS  Google Scholar 

  • Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T. A. J., & Pui, D. Y. H. (2009). Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). Journal of Nanoparticle Research, 11(1), 101–1109.

  • Asbach, C., Alexander, C., Clavaguera, S., Dahmann, D., Dozol, H., Faure, B., Fierz, M., Fontana, L., Iavicoli, I., Kaminski, H., MacCalman, L., Meyer-Plath, A., Simonow, B., van Tongeren, M., & Todea, A. M. (2017). Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Science of the Total Environment, 603-604, 793–806.

    CAS  Google Scholar 

  • Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Muller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., & Viana, M. (2012). Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmospheric Measurement Techniques, 5(8), 1869–1887.

    CAS  Google Scholar 

  • Benaissa, F., Bendahmane, I., Bourfis, N., Aoulaiche, O., & Alkama, R. (2019). Bioindication of urban air polycyclic aromatic hydrocarbons using Petunia hybrida. Civil Engineering Journal, 5(10.28991).

  • Bravo, M. A., Fuentes, M., Zhang, Y., Burr, M. J., & Bell, M. L. (2012). Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation. Environmental research, 116, 1–10.

    CAS  Google Scholar 

  • Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., & Querol, X. (2015). Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmospheric Chemistry and Physics, 15(10), 5929–5945.

    CAS  Google Scholar 

  • Buonanno, G., Morawska, L., Stabile, L., & Viola, A. (2010). Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environment, 44(32), 3963–3969.

    CAS  Google Scholar 

  • Buonanno, G., Marini, S., Morawska, L., & Fuoco, F. C. (2012). Individual dose and exposure of Italian children to ultrafine particles. Science of the Total Environment, 438, 271–277.

    CAS  Google Scholar 

  • Cassee, F. R., Héroux, M., Gerlofs-Nijland, M. E., & Kelly, F. J. (2013). Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicology, 25(14), 802–812.

    CAS  Google Scholar 

  • Chaloulakou, A., Kassomenos, P., Grivas, G., & Spyrellis, N. (2005). Particulate matter and black smoke concentration levels in central Athens, Greece. Environment International, 31(5), 651–659.

    CAS  Google Scholar 

  • Chien, C., Theodore, A., Wu, C., Hsu, Y., & Birky, B. (2016). Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers. Journal of Aerosol Science, 101, 77–85.

    CAS  Google Scholar 

  • Cho, H. J., Kang, J., Kim, D., Seo, A., Park, M., Joo, H., & Park, K. (2018). A study on elevated concentrations of submicrometer particles in an urban atmosphere. Atmosphere, 9(10), 393.

    CAS  Google Scholar 

  • Cruz, C. N., & Pandis, S. N. (2000). Deliquescence and hygroscopic growth of mixed inorganic− organic atmospheric aerosol. Environmental Science & Technology, 34(20), 4313-4319.

    CAS  Google Scholar 

  • Cyrys, J., Stölzel, M., Heinrich, J., Kreyling, W. G., Menzel, N., Wittmaack, K., Tuch, T., & Wichmann, H. -. (2003). Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Science of the Total Environment, 305(1-3), 143–156.

  • Dall'Osto, M., Beddows, D. C. S., Pey, J., Rodriguez, S., Alastuey, A., Harrison R, M., & Querol, X. (2012). Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain. Atmospheric Chemistry and Physics, 12(22), 10693–10707.

    CAS  Google Scholar 

  • Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., & Schwartz, J. D. (2017). Air pollution and mortality in the Medicare population. New England Journal of Medicine, 376(26), 2513–2522.

    CAS  Google Scholar 

  • Diapouli, E., Chaloulakou, A., Mihalopoulos, N., & Spyrellis, N. (2008). Indoor and outdoor PM mass and number concentrations at schools in the Athens area. Environmental Monitoring and Assessment, 136(1-3), 13–20.

    CAS  Google Scholar 

  • Diapouli, E., Kalogridis, A., Markantonaki, C., Vratolis, S., Fetfatzis, P., Colombi, C., & Eleftheriadis, K. (2017). Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece. Atmosphere, 8(12), 234.

    Google Scholar 

  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr., B. G., & Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 329(24), 1753–1759.

    CAS  Google Scholar 

  • dos Santos, L.H.M., Kerr, A.A.F.S., Verissimo, T.G., Andrade, M.F., de Miranda, R.M., Fornaro, A. and Saldiva, P. (2014). Analysis of atmospheric aerosol (PM2.5) in Recife city, Brazil. Journal of the Air & Waste Management Association, 64, 519–528.

    Google Scholar 

  • Driscoll, K. E. (1996). Role of inflammation in the development of rat lung tumors in response to chronic particulate exposure. Inhalation Toxicology, 8(Suppl. 1), 139–153.

    Google Scholar 

  • Duffin, R., Tran, L., Brown, D., Stone, V., & Donaldson, K. (2007). Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhalation Toxicology, 19(10), 849–856.

    CAS  Google Scholar 

  • Eeftens, M., Tsai, M. -., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dėdelė, A., Eriksen, K., Galassi, C., Gražulevičienė, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M., Ineichen, A., Katsouyanni, K., Korek, M., Krämer, U., Kuhlbusch, T., Lanki, T., Madsen, C., Meliefste, K., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D., Udvardy, O., Vaskövi, É., Weinmayr, G., Brunekreef, B. and Hoek, G. (2012). Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 european study areas and the relationship with NO2 - results of the ESCAPE project. Atmospheric Environment, 62, 303-317.

  • European Council, D. (2008). On ambient air quality and cleaner air for Europe 2008/50/EC. Off. J., 1, 1–44.

    Google Scholar 

  • Fierz, M. (2011). Lung-deposited surface area measurements in Zürich. In 15th ETH Conference. Available at: http://www.exisab.com/Docs/Conferences/ETH_Nanoparticle_2011

  • Fissan, H., Neumann, S., Trampe, A., Pui, D. Y. H., & Shin, W. G. (2007). Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. Journal of Nanoparticle Research, 9(1), 53–59.

    Google Scholar 

  • Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris, E., Gkatzelis, G. I., Patoulias, D., Mihalopoulos, N., & Pandis, S. N. (2017). The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 17(4), 3145–3163.

    CAS  Google Scholar 

  • Gäggeler, H. W., Baltensperger, U., Emmenegger, M., Jost, D. T., Schmidt-Ott, A., Haller, P., & Hofmann, M. (1989). The epiphaniometer, a new device for continuous aerosol monitoring. Journal of Aerosol Science, 20(5), 557–564.

    Google Scholar 

  • Gini, M. I., Helmis, C. G., & Eleftheriadis, K. (2013). Cascade epiphaniometer: an instrument for aerosol "fuchs" surface area size distribution measurements. Journal of Aerosol Science, 63, 87–102.

    CAS  Google Scholar 

  • Gomes, J. F. P., Bordado, J. C. M., & Albuquerque, P. C. S. (2012). On the assessment of exposure to airborne ultrafine particles in urban environments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 75(22-23), 1316–1329.

    CAS  Google Scholar 

  • Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the greater area of Athens, Greece. Atmospheric Environment, 40(7), 1216–1229.

    CAS  Google Scholar 

  • Grivas, G., Chaloulakou, A., Samara, C., & Spyrellis, N. (2004). Spatial and temporal variation of PM 10 mass concentrations within the greater area of Athens, Greece. Water, Air, and Soil Pollution, 158(1), 357–371.

    CAS  Google Scholar 

  • Grivas, G., Chaloulakou, A., & Spyrelis, N. (2007). Continuous measurements of particle number concentrations, in Athens, Greece, European Aerosol Conference 2007, Salzburg, Abstract T15A013.

  • Grivas, G., Chaloulakou, A., & Kassomenos, P. (2008). An overview of the PM10 pollution problem, in the metropolitan area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport. Science of the Total Environment, 389(1), 165–177.

    CAS  Google Scholar 

  • Grivas, G., Cheristanidis, S., & Chaloulakou, A. (2012). Elemental and organic carbon in the urban environment of Athens. Seasonal and diurnal variations and estimates of secondary organic carbon. Science of the Total Environment, 414, 535–545.

    CAS  Google Scholar 

  • Grivas, G., Cheristanidis, S., Chaloulakou, A., Koutrakis, P., & Mihalopoulos, N. (2018). Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosol and Air Quality Research, 18(7), 1642–159.

  • Grivas, G., Diapouli, E., Kanouta, V., Biskos, G., Chaloulakou, A., Spyrellis, N. & Koutrakis, P. (2006), First results from an integrated fine particulate matter (PM1 and PM2.5) study in the Greater Area of Athens, Greece, 7th International Aerosol Conference 2006, 10-15 September 2006, St Paul, USA, pp. 1193-1194.

  • Grivas, G., Stavroulas, I., Liakakou, E., Kaskaoutis, D. G., Bougiatioti, A., Paraskevopoulou, D., Gerasopoulos, E., & Mihalopoulos, N. (2019). Measuring the spatial variability of black carbon in Athens during wintertime. Air Quality, Atmosphere & Health, 12(12), 1405–1417.

    CAS  Google Scholar 

  • Gu, J., Pitz, M., Schnelle-Kreis, J., Diemer, J., Reller, A., Zimmermann, R., Soentgen, J., Stoelzel, M., Wichmann, H.-E., Peters, A., & Cyrys, J. (2011). Source apportionment of ambient particles: comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmospheric Environment, 45(10), 1849–1857.

    CAS  Google Scholar 

  • Habre, R., Zhou, H., Eckel, S. P., Enebish, T., Fruin, S., Bastain, T., Rappaport, E., & Gilliland, F. (2018). Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environment International, 118, 48–59.

    CAS  Google Scholar 

  • Hama, S. M. L., Ma, N., Cordell, R. L., Kos, G. P. A., Wiedensohler, A., & Monks, P. S. (2017). Lung deposited surface area in Leicester urban background site/UK: sources and contribution of new particle formation. Atmospheric Environment, 151, 94–107.

    CAS  Google Scholar 

  • Harrison, R. M., Deacon, A. R., Jones, M. R., & Appleby, R. S. (1997). Sources and processes affection concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmospheric Environment, 31(24), 4103–4117.

    CAS  Google Scholar 

  • Hatoya, K., Okuda, T., Funato, K., & Inoue, K. (2016). On-line measurement of the surface area concentration of aerosols in Yokohama, Japan, using the diffusion charging method. Asian Journal of Atmospheric Environment, 10(1), 1–12.

    Google Scholar 

  • Hennig, F., Quass, U., Hellack, B., Küpper, M., Kuhlbusch, T. A., Stafoggia, M., & Hoffmann, B. (2018). Ultrafine and fine particle number and surface area concentrations and daily cause-specific mortality in the Ruhr Area, Germany, 2009–2014. Environmental health perspectives, 126(2), 027008.

    Google Scholar 

  • Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health: A Global Access Science Source, 12(1), 43.

    CAS  Google Scholar 

  • Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A., & Wu, Z. (2012). Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing. Environmental Science and Technology, 46(18), 9941–9947.

    CAS  Google Scholar 

  • ICRP (1994). Human respiratory tract model for radiological protection. ICRP Publication 66. Ann. ICRP 24 (1-3).

  • International Agency for Research on Cancer (2013). Air pollution and cancer, IARC Scientific Publication: Lyon, France, No. 161.

  • ISO 9835:1993 (1993). Ambient Air: Determination of a Black Smoke Index.

  • ISO 9277:2010 (2010) Determination of the Specific Surface Area of Solids by Gas Adsorption – BET Method.

  • Järvinen, A., Kuuluvainen, H., Niemi, J. V., Saari, S., Dal Maso, M., Pirjola, L., Hillamoe, R., Jankaf, K., Keskinena, J., & Rönkkö, T. (2015). Monitoring urban air quality with a diffusion charger based electrical particle sensor. Urban Climate, 14, 441–456.

    Google Scholar 

  • Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, J., & Giovis, C. (2005). A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Science & Environmental Epidemiology, 15(2), 185–204.

    CAS  Google Scholar 

  • Kalkavouras, P., Bougiatioti, A., Grivas, G., Stavroulas, I., Kalivitis, N., Liakakou, E., Gerasopoulos, E., Pilinis, C., & Mihalopoulos, N. (2020). On the regional aspects of new particle formation in the Eastern Mediterranean: a comparative study between a background and an urban site based on long term observations. Atmospheric Research, 104911.

  • Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., & Borowiak, A. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9).

  • Kassomenos, P., Kotroni, V., & Kallos, G. (1995). Analysis of climatological and air quality observations from greater Athens area. Atmospheric Environment, 29(24), 3671–3688.

    CAS  Google Scholar 

  • Kassomenos, P., Flocas, H. A., Lykoudis, S., & Skouloudis, A. (1998). Spatial and temporal characteristics of the relationship between air quality status and mesoscale circulation over an urban Mediterranean basin. Science of the Total Environment, 217(1-2), 37–57.

    CAS  Google Scholar 

  • Katsouyanni, K., Samet, J. M., Anderson, H. R., Atkinson, R., Le Tertre, A., Medina, S., Samoli, E., Touloumi, G., Burnett, R. T., Krewski, D., Ramsay, T., Domicini, F., Peng, R. D., Schwartz, J., & Zanobetti, A. (2009). Air pollution and health: a European and North American approach (APHENA). Research Report (Health Effects Institute), 142, 5–90.

    CAS  Google Scholar 

  • Kiriya, M., Okuda, T., Yamazaki, H., Hatoya, K., Kaneyasu, N., Uno, I., Nishita, C., Hara, K., Hayashi, M., Funato, K., Inoue, K., Yamamoto, S., Yoshimo, A., & Takami, A. (2017). Monthly and diurnal variation of the concentrations of aerosol surface area in Fukuoka, Japan, measured by diffusion charging method. Atmosphere, 8(7), 114.

    Google Scholar 

  • Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G., & Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health - Part A, 65(20), 1513–1530.

    CAS  Google Scholar 

  • Ku, B. K., & Evans, D. E. (2012). Investigation of aerosol surface area estimation from number and mass concentration measurements: particle density effect. Aerosol Science and Technology, 46(4), 473–484.

    CAS  Google Scholar 

  • Kuang, Y., Tao, J., Xu, W., Yu, Y., Zhao, G., Shen, C., Bian, Y., & Zhao, C. (2019). Calculating ambient aerosol surface area concentrations using aerosol light scattering enhancement measurements. Atmospheric Environment, 216, 116919.

    CAS  Google Scholar 

  • Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., & Kerminen, V.-M. (2012). Measurement of the nucleation of atmospheric aerosol particles. Nature protocols, 7(9), 1651–1667.

    CAS  Google Scholar 

  • Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., & Britter, R. (2011). Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. Journal of Aerosol Science, 42(9), 580–603.

    CAS  Google Scholar 

  • Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment international, 75, 199–205.

    Google Scholar 

  • Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H., Kousa, A., Aurela, M., Rönkkö, T., & Timonen, H. (2020). Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources. Aerosol Science and Technology, 54(2), 190–202.

    CAS  Google Scholar 

  • Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P., Lähde, T., Pirjola, L., Niemi, J. V., Hillamo, R., & Keskinen, J. (2016). Lung deposited surface area size distributions of particulate matter in different urban areas. Atmospheric Environment, 136, 105–113.

    CAS  Google Scholar 

  • Liakakou, E., Stavroulas, I., Kaskaoutis, D. G., Grivas, G., Paraskevopoulou, D., Dumka, U. C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E., & Mihalopoulos, N. (2020). Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 222, 117137.

    CAS  Google Scholar 

  • Lianou, M., Chalbot, M., Kavouras, I. G., Kotronarou, A., Karakatsani, A., Analytis, A., Katsouyanni, K., Puustinen, A., Hameri, K., Vallius, M., Pekkanen, J., Meddings, C., Harrison, R. M., Ayres, J. G., ten Brick, H., Kos, G., Meliefste, K., de Hartog, J., & Hoek, G. (2011). Temporal variations of atmospheric aerosol in four European urban areas. Environmental Science and Pollution Research, 18(7), 1202–1212.

    CAS  Google Scholar 

  • Liu, Z. R., Hu, B., Liu, Q., Sun, Y., & Wang, Y. S. (2014). Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmospheric environment, 96, 359–369.

    CAS  Google Scholar 

  • Lonati, G., Crippa, M., Gianelle, V., & Van Dingenen, R. (2011). Daily patterns of the multi-modal structure of the particle number size distribution in Milan, Italy. Atmospheric Environment, 45(14), 2434–2442.

    CAS  Google Scholar 

  • Löndahl, J., Massling, A., Swietlicki, E., Bräuner, E. V., Ketzel, M., Pagels, J., & Loft, S. (2009). Experimentally determined human respiratory tract deposition of airborne particles at a busy street. Environmental Science and Technology, 43(13), 4659–4664.

    Google Scholar 

  • Majid, H., Alam, K., Madl, P., & Hofmann, W. (2013). Exposure assessment and associated lung deposition calculations for vehicular exhaust in four metropolitan cities of Pakistan. Environmental Monitoring and Assessment, 185(6), 5265–5276.

    CAS  Google Scholar 

  • Marjamäki, M., Keskinen, J., Chen, D., & Pui, D. Y. H. (2000). Performance evaluation of the electrical low-pressure impactor (ELPI). Journal of Aerosol Science, 31(2), 249–261.

    Google Scholar 

  • Marra, J., Voetz, M., & Kiesling, H. -. (2010). Monitor for detecting and assessing exposure to airborne nanoparticles. Journal of Nanoparticle Research, 12(1), 21–37.

  • Matson, U. (2005). Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Science of the Total Environment, 343(1-3), 169–176.

    CAS  Google Scholar 

  • Maynard, A. D. (2003). Estimating aerosol surface area from number and mass concentration measurements. Annals of Occupational Hygiene, 47(2), 123–144.

    Google Scholar 

  • Maynard, A. D., & Aitken, R. J. (2007). Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology, 1(1), 26–41.

    CAS  Google Scholar 

  • Melas, D., Ziomas, I., Klemm, O., & Zerefos, C. S. (1998). Flow dynamics in Athens area under moderate large-scale winds. Atmospheric Environment, 32(12), 2209–2222.

    CAS  Google Scholar 

  • Miguel, G. S., Fowler, G. D., Dall'Orso, M., & Sollars, C. J. (2002). Porosity and surface characteristics of activated carbons produced from waste tyre rubber. Journal of Chemical Technology and Biotechnology, 77(1), 1–8.

    Google Scholar 

  • Mokhtar, M., Jayaratne, R., Morawska, L., Mazaheri, M., Surawski, N., & Buonanno, G. (2013). NSAM-derived total surface area versus SMPS-derived "mobility equivalent" surface area for different environmentally relevant aerosols. Journal of Aerosol Science, 66, 1–11.

    CAS  Google Scholar 

  • Möller, W., Meyer, G., Scheuch, G., Kreyling, W. G., & Bennett, W. D. (2009). Left-to-right asymmetry of aerosol deposition after shallow bolus inhalation depends on lung ventilation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 22(4), 333–339.

    Google Scholar 

  • Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B., & Donaldson, K. (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occupational and Environmental Medicine, 64(9), 609–615.

    CAS  Google Scholar 

  • Montoya, L., Lawrence, J., Murthy, G. K., Sarnat, J., Godleski, J., & Koutrakis, P. (2004). Continuous measurements of ambient particle deposition in human subjects. Aerosol Science and Technology, 38(10), 980–1990.

  • Mordas, G., Manninen, H. E., Petëjä, T., Aalto, P. P., Hämeri, K., & Kulmala, M. (2008). On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007). Aerosol Science and Technology, 42(2), 152–158.

    CAS  Google Scholar 

  • Motesaddi, S., Hashempour, Y., & Nowrouz, P. (2017). Characterizing of air pollution in Tehran: comparison of two air quality indices. Civil Engineering Journal, 3(9), 749–758.

    Google Scholar 

  • Mulenga, D., & Siziya, S. (2019). Indoor air pollution related respiratory ill health, a sequel of biomass use. SciMedicine Journal, 1(1), 3037.

    Google Scholar 

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.

    CAS  Google Scholar 

  • Ntziachristos, L., Polidori, A., Phuleria, H., Geller, M. D., & Sioutas, C. (2007). Application of a diffusion charger for the measurement of particle surface concentration in different environments. Aerosol Science and Technology, 41(6), 571–580.

    CAS  Google Scholar 

  • Oberdörster, G. (1996). Significance of particle parameters in the evaluation of exposure–dose response relationships of inhaled particles. Particulate Science and Technology, 14(2), 135–151.

    Google Scholar 

  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

    Google Scholar 

  • Okuda, T., Yamazaki, H., Hatoya, K., Kaneyasu, N., Yoshino, A., Takami, A., Funato, K., Inoue, K., Nishita, C., Hara, K., & Hayashi, M. (2016). Factors controlling the variation of aerosol surface area concentrations measured by a diffusion charger in Fukuoka, Japan. Atmosphere, 7(3).

  • Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., & Kleeman, M. J. (2015). Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California teachers study cohort. Environmental Health Perspectives, 123(6), 549–556.

    CAS  Google Scholar 

  • Pacitto, A., Stabile, L., Russo, S., & Buonanno, G. (2020). Exposure to submicron particles and estimation of the dose received by children in school and non-school environments. Atmosphere, 11(5).

  • Pandis, S. N., Baltensperger, U., Wolfenbarger, J. K., & Seinfeld, J. H. (1991). Inversion of aerosol data from the epiphaniometer. Journal of Aerosol Science, 22(4), 417–428.

    CAS  Google Scholar 

  • Park, K., Kittelson, D. B., & McMurry, P. H. (2004). Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): relationships to particle mass and mobility. Aerosol Science and Technology, 38(9), 881–889.

    CAS  Google Scholar 

  • Park, J. Y., Raynor, P. C., Maynard, A. D., Eberly, L. E., & Ramachandran, G. (2009). Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmospheric Environment, 43(3), 502–509.

    CAS  Google Scholar 

  • Park, J. Y., Ramachandran, G., Raynor, P. C., & Kim, S. W. (2011). Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. Journal of Nanoparticle Research, 13(10), 4897.

    CAS  Google Scholar 

  • Peng, Y., Dong, Y., Li, X., Liu, X., Dai, J., Chen, C., Dong, Z., Du, C., & Wang, Z. (2017). Different characteristics of new particle formation events at two suburban sites in northern China. Atmosphere, 8(12), 258.

    Google Scholar 

  • Pérez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., & Viana, M. (2010). Variability of particle number, black carbon, and PM 10, PM 2.5, and PM 1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 44(7), 487–499.

    Google Scholar 

  • Petäjä, T., Kerminen, V., Dal Maso, M., Junninen, H., Koponen, I. K., Hussein, T., Aalto, P. P., Andronopoulos, S., Robin, D., Hämeri, K., Bartzis, J. G., & Kulmala, M. (2007). Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmospheric Chemistry and Physics, 7(10), 2705–2720.

    Google Scholar 

  • Pirjola, L., Niemi, J. V., Saarikoski, S., Aurela, M., Enroth, J., Carbone, S., Saarnio, K., Kuuluvainen, H., Kousa, A., Rönkkö, T., & Hillamo, R. (2017). Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmospheric Environment, 158, 60–75.

    CAS  Google Scholar 

  • Pitz, M., Schmid, O., Heinrich, J., Birmili, W., Maguhn, J., Zimmermann, R., Wichmann, H.-E., Peters, A., & Cyrys, J. (2008). Seasonal and diurnal variation of PM2.5 apparent particle density in urban air in Augsburg, Germany. Environmental Science and Technology, 42(14), 5087–5093.

    CAS  Google Scholar 

  • Pope III, C. A., Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., & Heath Jr., C. W. (1995). Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American Journal of Respiratory and Critical Care Medicine, 151(3 I), 669–674.

    Google Scholar 

  • Raffuse, S. M., Sullivan, D. C., McCarthy, M. C., Penfold, B. M., & Hafner, H. R. (2007). Ambient air monitoring network assessment guidance, analytical techniques for technical assessments of ambient air monitoring networks. EPA-454/D-07-001, Retrieved July, 20.

  • Reche, C., Viana, M., Brines, M., Pérez, N., Beddows, D., Alastuey, A., & Querol, X. (2015). Determinants of aerosol lung-deposited surface area variation in an urban environment. Science of the Total Environment, 517, 38–47.

    CAS  Google Scholar 

  • Rogak, S. N., & Flagan, R. C. (1993). The mobility and structure of aerosol agglomerates. Aerosol Science and Technology, 18(1), 25–47.

    CAS  Google Scholar 

  • Schmid, O., & Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 99, 133–143.

    CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics, from air pollution to climate change. New York: Wiley.

    Google Scholar 

  • Shin, W. G., Pui, D. Y. H., Fissan, H., Neumann, S., & Trampe, A. (2007). Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). Journal of Nanoparticle Research, 9(1), 61–69.

    CAS  Google Scholar 

  • Siegmann, H. C. (2001). Surface science with nanosized particles in a carrier gas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 19(1), 1–8.

    Google Scholar 

  • Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M.-E., Hirvonen, M.-R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J.-P., & Brunekreef, B. (2015). Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Journal, 46(6), 1577–1588.

    CAS  Google Scholar 

  • Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The changing paradigm of air pollution monitoring. Environmental Science and Technology, 47(20), 11369–11377.

    CAS  Google Scholar 

  • Sowlat, M. H., Hasheminassab, S., & Sioutas, C. (2016). Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmospheric Chemistry & Physics, 16(7), 4849–4866.

    CAS  Google Scholar 

  • Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., & Heyder, J.,& Schulz, H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives, 114(3), 328–333.

  • Striebig, B., Smitts, E., & Morton, S. (2019). Impact of transportation on carbon dioxide emissions from locally vs. non-locally sourced food. Emerging Science Journal, 3(4), 222234.

    Google Scholar 

  • Su, L., Ou, Q., Cao, L. N. Y., Du, Q., & Pui, D. Y. H. (2019). Real-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument. Aerosol Science and Technology, 53(12), 1453–1467.

    CAS  Google Scholar 

  • Theodosi, C., Grivas, G., Zarmpas, P., Chaloulakou, A., & Mihalopoulos, N. (2011). Mass and chemical composition of size-segregated aerosols (PM 1, PM 2.5, PM 10) over Athens, Greece: local versus regional sources. Atmospheric Chemistry & Physics, 11(22).

  • Tran, C. L., Buchanan, D., Cullen, R. T., Searl, A., Jones, A. D., & Donaldson, K. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology, 12(12), 1113–1126.

    CAS  Google Scholar 

  • Tritscher, T., Jurnyi, Z., Martin, M., Chirico, R., Gysel, M., Heringa, M. F., DeCarlo, P. F., Sierau, B., Prévôt, A. S. H., Weingartner, E., & Baltensperger, U. (2011). Changes of hygroscopicity and morphology during ageing of diesel soot. Environmental Research Letters, 6(3), 034026.

    Google Scholar 

  • TSI. (2012). Optical Particle Sizer Model 3330 Manual (6th ed.). Shoreview: Trust Science Innovation.

    Google Scholar 

  • USEPA (2013). DRAFT Roadmap for Next Generation Air Monitoring U.S. Environmental Protection Agency, EPA, https://www.epa.gov/sites/production/files/2014-09/documents/roadmap-20130308.pdf

  • Varotsos, C., Ondov, J., Tzanis, C., Öztürk, F., Nelson, M., Ke, H., & Christodoulakis, J. (2012). An observational study of the atmospheric ultra-fine particle dynamics. Atmospheric Environment, 59, 312–319.

    CAS  Google Scholar 

  • Viana, M., Rivas, I., Reche, C., Fonseca, A. S., Pérez, N., Querol, X., Alastuey, M., Álvarez-Pedrerol, M., & Sunyer, J. (2015). Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmospheric Environment, 123, 220–228.

    CAS  Google Scholar 

  • Vu, T. V., Delgado-Saborit, J. M., & Harrison, R. M. (2015). Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmospheric Environment, 122, 114–132.

    CAS  Google Scholar 

  • Wierzbicka, A., Nilsson, P. T., Rissler, J., Sallsten, G., Xu, Y., Pagels, J. H., Albin, M., Österberg, K., Strandberg, B., Eriksson, A., Bohgard, M., Bergemalm-Rynell, K., & Gudmundsson, A. (2014). Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies. Atmospheric Environment, 86, 212–219.

    CAS  Google Scholar 

  • Wilson, W. E., Stanek, J., Hee-Siew, H., Johnson, T., Sakurai, H., Pui, D. Y. H., Chen, D.-R., & Duthie, S. (2007). Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. Journal of the Air and Waste Management Association, 57(2), 211–220.

    Google Scholar 

  • Wu, C., & Zhen Yu, J. (2018). Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting. Atmospheric Measurement Techniques, 11(2), 1233–1250.

    CAS  Google Scholar 

  • Xu, P., Wang, W., Yang, L., Zhang, Q., Gao, R., Wang, X., Nie, W., & Gao, X. (2011). Aerosol size distributions in urban Jinan: seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere. Environmental Monitoring and Assessment, 179(1-4), 443–456.

    Google Scholar 

  • Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic. Science of the total Environment, 450, 307–316.

  • Zhao, S., Yu, Y., Yin, D., & He, J. (2017). Effective density of submicron aerosol particles in a typical valley city, western China. Aerosol and Air Quality Research, 17(1), 1–13.

    CAS  Google Scholar 

  • Zhu, Y., Hinds, W. C., Shen, S., & Sioutas, C. (2004). Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles. Aerosol Science and Technology, 38(SUPPL. 1), 5–13.

    CAS  Google Scholar 

  • Zimmer, A. T., & Maynard, A. D. (2002). Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates. Annals of Occupational Hygiene, 46(8), 663–672.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Cheristanidis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Glossary Abbreviation

Appendix: Glossary Abbreviation

Al:

alveolar deposition efficiency

BET SA:

Brunauer–Emmett–Teller surface area

CMD:

count median diameter

CPC:

condensation particle counter

eBC:

equivalent black carbon

GSD:

geometric standard deviation

ICRP:

international radiation protection committee

LDSA:

lung-deposited surface area

NSAM:

nanoparticle surface area monitor

OPS:

optical particle sizer

PM:

particulate matter

SA:

surface area concentration

SA1:

surface area concentration based on particle number size distribution

SA1-ICRP:

LDSA concentrations calculated by SA1 based on ICRPs’ function

SA2:

surface area concentration based on Maynard algorithm

SMPS:

scanning mobility particle sizer

Tb:

tracheo-bronchial deposition efficiency

UFP:

ultrafine particles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheristanidis, S., Grivas, G. & Chaloulakou, A. Determination of total and lung-deposited particle surface area concentrations, in central Athens, Greece. Environ Monit Assess 192, 627 (2020). https://doi.org/10.1007/s10661-020-08569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08569-8

Keywords

Navigation