Skip to main content

Advertisement

Log in

Assessment of forest carbon stocks for REDD+ implementation in the muyong forest system of Ifugao, Philippines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forests hold significant potential for carbon sequestration and climate change mitigation. Forest biomass estimation is vital for sustainable forest management, providing critical input data for implementing the United Nations Reducing Emissions from Deforestation and forest Degradation-plus (REDD+) mechanism. This study investigates the total carbon pools—aboveground biomass (AGB), belowground biomass (BGB), forest floor biomass, and soil carbon—using field-based information in the muyong forest management system, which is native to Ifugao in the Philippines. This study reveals that a difference may be observed between the total carbon stock of the private woodlots (muyong) and that of the communal forest (bilid). The results indicate that the bilid forest has trees with a small diameter at breast height (DBH) and high tree density in contrast to the muyong, which has trees with high DBH and low tree density. The average carbon stock per unit area is higher in muyong (150.8 tC/ha) than in bilid (126.1 tC/ha). These findings are valuable in determining whether Ifugao’s muyong forest system should be included under the REDD+ framework. Human mediation and management helps forests to sequester a greater amount of carbon than they would without human intervention. Implementation of REDD+ should promote Ifugao’s ecosystem and biodiversity conservation and agroforestry practices in addition to protecting traditional agricultural practices and livelihoods in relation to rice terraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246.

    Article  Google Scholar 

  • Andoh, J., & Lee, Y. (2018). National REDD+ strategy for climate change mitigation: A review and comparison of developing countries. Sustainability, 10(12). https://doi.org/10.3390/su10124781.

  • Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 3693–3715.

    Article  Google Scholar 

  • Avtar, R., Sawada, H., Takeuchi, W., & Singh, G. (2012). Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation. Geocarto International, 27(2), 119–137.

    Article  Google Scholar 

  • Avtar, R., Sawada, H., & Kumar, P. (2013a). Role of remote sensing and community forestry to manage forests for the effective implementation of REDD+ mechanism: A case study on Cambodia. Environment, Development and Sustainability, 15(6), 1593–1603. https://doi.org/10.1007/s10668-013-9448-y.

    Article  Google Scholar 

  • Avtar, R., Suzuki, R., Takeuchi, W., & Sawada, H. (2013b). PALSAR 50 m mosaic data based National Level Biomass Estimation in Cambodia for implementation of REDD+ mechanism. PLoS One, 8(10), e74807. https://doi.org/10.1371/journal.pone.0074807.

    Article  CAS  Google Scholar 

  • Avtar, R., Takeuchi, W., & Sawada, H. (2013c). Monitoring of biophysical parameters of cashew plants in Cambodia using ALOS/PALSAR data. Environmental Monitoring and Assessment, 185(2), 2023–2037.

    Article  CAS  Google Scholar 

  • Avtar, R., Kumar, P., Oono, A., Saraswat, C., Dorji, S., & Hlaing, Z. (2016). Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas (Vol. 32). https://doi.org/10.1080/10106049.2016.1206974.

  • Avtar, R., Tsusaka, K., & Herath, S. (2019). REDD+ implementation in community-based muyong forest management in Ifugao, Philippines. Land, 8(11), 164. https://doi.org/10.3390/land8110164.

    Article  Google Scholar 

  • Baccini, A., Friedl, M., Woodcock, C., & Warbington, R. (2004). Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters, 31(10).

  • Borah, J. R., Evans, K. L., & Edwards, D. P. (2018). Quantifying carbon stocks in shifting cultivation landscapes under divergent management scenarios relevant to REDD. Ecological applications : a publication of the Ecological Society of America, 28(6), 1581–1593. https://doi.org/10.1002/eap.1764.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer (Vol. 134). Food & Agriculture Org.

  • Brown, S., & Lugo, A. E. (1990). Tropical secondary forests. Journal of Tropical Ecology, 6(1), 1–32.

  • Brown, S. A. N. D. R. A., & Lugo, A. E. (1992). Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia. Caracas, 17(1), 8–18.

    CAS  Google Scholar 

  • Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. C., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. Forest Ecology and Management, 75(1–3), 175–189.

    Article  Google Scholar 

  • Butic, M., & Ngidlo, R. (2003). Muyong forest of Ifugao: Assisted natural regeneration in traditional forest management. Advancing assisted natural regeneration (ANR) in Asia and the Pacific. Regional Office for Asia and the Pacific, Food and Agriculture Organization of the United Nations, Bangkok, Thailand, 23–27.

  • Calderon, M., Dizon, J., Sajise, A., Andrada II, R., Bantayan, N., & Salvador, M. (2009). Towards the development of a sustainable financing mechanism for the conservation of the Ifugao rice terraces in the Philippines.

  • Center, E. L. A., GOM, G. O. M., Asia, G. S., NGOs, K. I., Areas, D.-P., & Bureau-DENR, W (n.d.). The Philippine national REDD-plus strategy.

  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190.

    Article  Google Scholar 

  • Conklin, H. C. (1980). Ethnographic atlas of Ifugao; a study of environment, culture, and society in northern Luzon.

    Google Scholar 

  • Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 37(5), 960–974.

    Article  Google Scholar 

  • Daniel, C. (2014). Government confirms Ifugao ‘muyong’ system. https://www.sunstar.com.ph/article/335314

  • Department of Environment and Natural Resources (2008). The Ifugao rice terraces Philippines project framework, GIAHS. http://www.fao.org/3/a-bp814e.pdf

  • Drake, J. B., Knox, R. G., Dubayah, R. O., Clark, D. B., Condit, R., Blair, J. B., & Hofton, M. (2003). Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Global Ecology and Biogeography, 12(2), 147–159.

    Article  Google Scholar 

  • Dugan, P., Durst, P. B., Ganz, D. J., & McKenzie, P. J. (2003). Advancing assisted natural regeneration (ANR) in Asia and the Pacific. RAP PUBLICATION, 19.

  • Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., et al. (2019). The importance of consistent global forest aboveground biomass product validation. Surveys in Geophysics, 40(4), 979–999.

    Article  CAS  Google Scholar 

  • Durst, P. B., Waggener, T., Enters, T., & Laycheng, T. (2001). Forests out of bounds: Impacts and effectiveness of logging bans in natural forests in Asia-Pacific. FAO.

  • Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 5). Hayama: Institute for Global Environmental Strategies.

    Google Scholar 

  • Englhart, S., Keuck, V., & Siegert, F. (2011). Aboveground biomass retrieval in tropical forests—The potential of combined X-and L-band SAR data use. Remote Sensing of Environment, 115(5), 1260–1271.

    Article  Google Scholar 

  • FAO. (2015). In global forest resources assessment 2015 country report Philippines. Forestry Department Food and Agriculture Organization of the United Nations, 164, 5.

  • Finkral, A. J., & Evans, A. M. (2008). The effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecology and Management, 255(7), 2743–2750.

    Article  Google Scholar 

  • Herath, S., Tsusaka, K., & Diwa, J. (2015). Assessment on the feasibility of REDD+ in Nagacadan Rice terraces of Ifugao and its muyong forest. Tokyo: United Nations University Institute for the Advanced Study of Sustainability.

    Google Scholar 

  • Hobley, E. U., & Wilson, B. (2016). The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere, 7(1), e01214.

    Article  Google Scholar 

  • Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9(4), 500–509. https://doi.org/10.1046/j.1365-2486.2003.00620.x.

    Article  Google Scholar 

  • Jang, J. W., & Salcedo, S. (2013). The socio-political structure that regulates the Ifugao Forest Maintenance (Vol. 58, pp. 85–94). Presented at the 2013 4th international conference on biology, environment and chemistry, IPCBEE.

  • Kiyono, Y., Furuya, N., Sum, T., Umemiya, C., Itoh, E., Araki, M., & Matsumoto, M. (2010). Carbon stock estimation by forest measurement contributing to sustainable forest management in Cambodia. Japan Agricultural Research Quarterly: JARQ, 44(1), 81–92.

    Article  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Soils Research: Theory, Reality and its Role in Technology, 220(1), 242–258. https://doi.org/10.1016/j.foreco.2005.08.015.

    Article  Google Scholar 

  • Lasco, R. D., Mallari, N. A. D., Pulhin, F. B., Florece, A. M., Rico, E. L. B., Baliton, R. S., & Urquiola, J. P. (2013). Lessons from early REDD. International Journal of Forestry Research, 2013.

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

  • Lindsell, J. A., & Klop, E. (2013). Spatial and temporal variation of carbon stocks in a lowland tropical forest in West Africa. Forest Ecology and Management, 289, 10–17.

    Article  Google Scholar 

  • Liu, K., Wang, J., Zeng, W., & Song, J. (2017). Comparison and evaluation of three methods for estimating forest above ground biomass using TM and GLAS data. Remote Sensing, 9(4), 341.

    Article  Google Scholar 

  • Lone, J., Sivasankar, T., Sarma, K. K., Qadir, A., & P L N Raju, (2017). Influence of slope aspect on above ground biomass estimation using ALOS-2 data (Vol. 6). https://doi.org/10.21275/ART20174506

  • Ma, L., Shen, C. Y., Fu, S. L., Lian, J. Y., & Ye, W. H. (2018). Temporal and spatial patterns in aboveground biomass within different habitats in a sub-tropical forest. Journal of Tropical Forest Science, 30(2), 143–153.

    Article  Google Scholar 

  • Marín-Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: A tropical analysis. Global Ecology and Biogeography, 22(1), 105–117.

    Article  Google Scholar 

  • Matsushima, N., & Tojo, Y. (2010). Satoyama initiative: Use and management of “muyong” in Ifugao Province, Northern Luzon Island in the Philippines.

  • McGroddy, M. E., Daufresne, T., & Hedin, L. O. (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 85, 2390–2401.

    Article  Google Scholar 

  • Minh, H. V. T., Avtar, R., Mohan, G., Misra, P., & Kurasaki, M. (2019). Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong Delta using sentinel-1A data: A case of an Giang Province. ISPRS International Journal of Geo-Information, 8(5). https://doi.org/10.3390/ijgi8050211.

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic matter. In D. L. Sparks et al. (Eds.), Method of soil analysis, Part (Vol. 3, pp. 961–1010). Madison: Chemical methods. Soil Science Society of America.

    Google Scholar 

  • Nelson, R., Krabill, W., & Tonelli, J. (1988). Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment, 24(2), 247–267. https://doi.org/10.1016/0034-4257(88)90028-4.

    Article  Google Scholar 

  • O’Connor, R. A. (1995). Agricultural change and ethnic succession in Southeast Asian states: A case for regional anthropology. The Journal of Asian Studies, 54(4), 968–996.

    Article  Google Scholar 

  • Pearson, T., Walker, S., & Brown, S. (2013). Sourcebook for land use, land-use change and forestry projects.

    Google Scholar 

  • Racelis, E. L., Carandang, W. M., Lasco, R. D., Racelis, D. A., Castillo, A. S., & Pulhin, J. M. (2008). Assessing the carbon budgets of large leaf mahogany (Swietenia macrophylla King) and Dipterocarp plantations in the Mt. Makiling Forest Reserve, Philippines. Journal of Environmental Science and Management, 11(1).

  • Ravindranath, N., & Ostwald, M. (2008). Methods for estimating above-ground biomass. Carbon inventory methods handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects, 113–147.

  • Roe, S. A. (2012). Spatial Prioritization of REDD+ sites in the Philippines. https://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/5365/Stephanie%20Roe_MP.pdf?sequence=1

  • Samreth, V., Chheng, K., Monda, Y., Kiyono, Y., Toriyama, J., Saito, S., et al. (2012). Tree biomass carbon stock estimation using permanent sampling plot data in different types of seasonal forests in Cambodia. Japan Agricultural Research Quarterly: JARQ, 46(2), 187–192.

    Article  Google Scholar 

  • Soriano, M. A., & Herath, S. (2019). Climate change and traditional upland paddy farming: A Philippine case study. Paddy and Water Environment, 1–14.

  • Tadono, T., Shimada, M., Murakami, H., & Takaku, J. (2009). Calibration of PRISM and AVNIR-2 onboard ALOS “Daichi”. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4042–4050.

    Article  Google Scholar 

  • Takahashi, K., Ikeyama, Y., & Okuhara, I. (2018). Stand dynamics and competition in a mixed forest at the northern distribution limit of evergreen hardwood species. Ecology and Evolution, 8(22), 11199–11212.

    Article  Google Scholar 

  • Timothy, D. J., & Nyaupane, G. P. (2009). Cultural heritage and tourism in the developing world: A regional perspective. Routledge.

  • Toorn, S. I. a. d. (2013). Conserving the Ifugao Rice Terraces World Heritage Site: Financing cultural landscapes in a less-developed country through an ecosystem services framework (Bachelor). The Netherlands: Faculty of Archaeology.

    Google Scholar 

  • Ullah, M. R., & Al-Amin, M. (2012). Above-and below-ground carbon stock estimation in a natural forest of Bangladesh. Journal of Forest Science, 58(8), 372–379.

    Article  Google Scholar 

  • Umarhadi, D. A., & Danoedoro, P. (2019). Correcting topographic effect on Landsat-8 images: An evaluation of using different DEMs in Indonesia. In Sixth Geoinformation Science Symposium (Vol. 11311, p. 113110L). International Society for Optics and Photonics.

  • UNESCO (2019). Rice Terraces of the Philippine Cordilleras. http://whc.unesco.org/en/list/722

  • UN-REDD, P (2016). Global & Regional Support. https://www.un-redd.org/. Accessed 1 Apr 2019.

  • Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-A review. Journal of Ecosystem & Ecography, 2(4), 1–7.

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for detemination soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37.

    Article  CAS  Google Scholar 

  • Weih, R. C., & Riggan, N. D. (2010). Object-based classification vs. pixel-based classification: Comparative importance of multi-resolution imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(4), C7.

    Google Scholar 

  • Wondo Genet, E. (2013). Training manual on: Forest carbon pools and carbon stock assessment in the context of SFM and REDD+. https://pdfs.semanticscholar.org/4559/ca2a2516838d03103cec1a8ea07ddac51e8b.pdf access on 9 Jul 2015.

  • World bank. (2010). A strategic approach to climate change in the Philippines. Sustainable Development Department East Asia & Pacific Region.

  • Xu, Y., Franklin, S. B., Wang, Q., Shi, Z., Luo, Y., Lu, Z., Zhang, J., Qiao, X., & Jiang, M. (2015). Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. Forest Ecology and Management, 357, 95–103.

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their thanks to the Asia-Pacific Network for Global Change Research (ARCP2011-13NMY-Herath) for supporting the field research and Japan Aerospace Exploration Agency (JAXA) for providing satellite data (PER2A2N133). We are also thankful to people of Ifugao who helped during the fieldwork. We are also thankful to Dr. Dixon Tuzon Gevana and Dr. Diwa Johanna Paula for their supports and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Avtar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 8 Muyong forest carbon stock
Table 9 Bilid forest carbon stock

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avtar, R., Tsusaka, K. & Herath, S. Assessment of forest carbon stocks for REDD+ implementation in the muyong forest system of Ifugao, Philippines. Environ Monit Assess 192, 571 (2020). https://doi.org/10.1007/s10661-020-08531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08531-8

Keywords

Navigation