Skip to main content

Advertisement

Log in

Inorganic content of rock dust waste from northwest of Rio de Janeiro, Brazil: do environmental risks incur from its use as natural fertilizer?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ornamental rock exploration and coating industry has led to significant environmental impacts due to the inadequate manner in which these residues are released into the environment. This impact may be reduced by using these residues for soil enrichment, as they contain high levels of inorganic nutrients. However, some elements may be potential contaminants, thus requiring a thorough previous research before employing these substances in agriculture. In this context, this study aims to determine potentially toxic elements present in rock dust residues, As, Cd, Cr, Cu, Pb, and V, through Inductively Coupled Plasma Optical Emission Spectroscopy (ICP OES) after wet decomposition. Cd concentrations in residual rock dust waste surpassed the maximum limit established by the Brazilian Ministry of Agriculture, Livestock and Supply stipulated in normative instruction No. 5/2016 for remineralizers and substrates for plants intended for agriculture. In addition, the official digestion method adopted by the Brazilian Agricultural Research Corporation Embrapa (used for soil analysis) was used for a rock dust waste analysis and compared to two different block digester-based procedures. Accuracy was confirmed by using the Certified Reference Material (CRM) NIST SRM 1646a (Estuarine Sediments) and addition/recovery tests. The limits of detection for the aforementioned elements, after aqua-regia-induced digestion, were of 0.07 mg kg−1 for As, 0.06 mg kg−1 for Cd, 0.01 mg kg−1 for Cr, 0.2 mg kg−1 for Cu, 0.03 mg kg−1 for Pb, and 0.09 mg kg−1 for V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hwaiti, M. S., Brumsack, H. J., & Schnetger, B. (2015). Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan. Environmental Monitoring and Assessment, 401, 1–18.

    Google Scholar 

  • Ambrosini, V. G., Rosa, D. J., Prado, J. P. C., Borghezan, M., de Melo, G. W. B., de Soares, C. R. F. S., Comin, J. J., Simão, D. G., & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270–280.

    Article  CAS  Google Scholar 

  • Babula, P.; Adam, V.; Havel, L. & Kizek, R. (2012). Cadmium accumulation by plants of Brassicaceae family and its connection with their primary and secondary metabolism. In: Anjum, N.A.; Ahad, I.; Pereira, M.E.; Duarte, A.C.; Umar, S. & Khan, N.A. The plant family Brassicaceae: contribution towards phytoremediation (pp. 339). New York: Springer.

  • Bochicchio, R., Sofo, A., Terzano, R., Gattullo, C. E., Amato, M., & Scopa, A. (2015). Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, 91, 20–27.

    Article  CAS  Google Scholar 

  • Carvalho, E. A., Campos, A. R., Peiter, C. C. & Rocha, J. C. (2002). Aproveitamento dos resíduos finos das serrarias de Santo Antônio de Pádua/RJ. III Simpósio de Rochas Ornamentais do Nordeste, Recife, Pernambuco.

  • Ceko, M. J., Aitken, J. B., & Harris, H. H. (2014). Speciation of copper in a range of food types by X-ray absorption spectroscopy. Food Chemistry, 164, 50–54.

    Article  CAS  Google Scholar 

  • Chaudhary, M., Singh, B. R., Krogstad, T., & Heim, M. (2011). Release of copper, zinc, and manganese from rock powder with organic materials applied to soils. Communications in Soil Science and Plant Analysis, 42, 2682–2697.

    Article  CAS  Google Scholar 

  • Costa, A. S. V., Horn, A. H., Donagemmaand, G. K., & Silva, M. B. (2010). Uso do resíduo de granito oriundo da serraria e polimento como corretivo e fertilizante de solos agrícolas. Geonomos, 18, 23–27.

    Google Scholar 

  • Decree No. 8,384, December 29, 2014 (2014). Inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes, ou biofertilizantes, remineralizadores e substratos para plantas destinados à agricultura. http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2014/Decreto/D8384.htm#art1. Accessed 15 March 2020.

  • Departamento de Recursos Minerais do Estado do Rio de Janeiro – DRM RJ (2014). Panorama mineral do Estado do Rio de Janeiro. http://www.drm.rj.gov.br/index.php/downloads/category/79-panorama-mineral-2014?download=551%3Apanorama-mineral-2014. Accessed 15 March 2020.

  • Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. Rio de Janeiro, RJ: Embrapa Solos.

    Google Scholar 

  • Fones, H. N., & Preston, G. M. (2013). Trade-offs between metal hyperaccumulation and induceddisease resistance in metal hyperaccumulator plants. Plant Pathology, 62, 63–71.

    Article  Google Scholar 

  • Soil Science Society of America (2020). Glossary of soil science terms. https://www.soils.org/publications/soils-glossary#. Accessed 15 March 2020.

  • Gouveia, S. T., Silva, F. V., Costa, L. M., Nogueira, A. R. A., & Nóbrega, J. A. (2001). Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Analytica Chimica Acta, 445, 269–275.

    Article  CAS  Google Scholar 

  • Heinemann, G., Braun, S., Overbeck, M., Page, M., Michel, J., & Vogt, W. (2000). The effect of vanadium-contaminated commercially available albumin solutions on renal tubular function. Clinical Nephrology., 53, 473–478.

    CAS  Google Scholar 

  • Hu, Y., Cheng, H., & Tao, S. (2016). The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environment International, 92, 515–532.

    Article  Google Scholar 

  • Li, J., Dong, F., Lu, Y., Yan, Q., & Shim, H. (2014). Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China. Plos One, 9, 1–8.

    Google Scholar 

  • Lima, T. M., & Neves, C. A. R. (2012). Departamento Nacional de Produção Mineral/Ministério de Minas e Energia. Sumário Mineral, 41, 105–106.

    Google Scholar 

  • Liu, Y., Xiao, T., Baveye, P. C., Zhu, J., Ning, Z., & Li, H. (2015). Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicology and Environmental Safety, 112, 122–131.

    Article  CAS  Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90, 2524–2530.

    Article  CAS  Google Scholar 

  • Monteiro, N. B. R., & Silva, E. A. (2018). Environmental licensing in Brazilian’s crushed stone industries. Environmental Impact Assessment Review, 71, 49–59.

    Article  Google Scholar 

  • Neto, S. N., Andrade, W. E. B. & Silva, J. A. C. (2015). A cultura do arroz no Estado do Rio de Janeiro – Tecnologias recomendadas. Informação Tecnológica Online, 64.

  • Ministério da Agricultura, Pecuária e Abastecimento – MAPA (2006). Normative ruling SDA No 27, June 5, 2006. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-27-de-05-06-2006-alterada-pela-in-sda-07-de-12-4-16-republicada-em-2-5-16.pdf. Accessed 15 March 2020.

  • Ministério da Agricultura, Pecuária e Abastecimento – MAPA (2016). Normative ruling SDA No 5, March 10, 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed 15 March 2020.

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47–49.

    Article  CAS  Google Scholar 

  • Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656.

    Article  CAS  Google Scholar 

  • Ranaa, A., Kallab, P., Vermaa, H. K., & Mohnota, J. K. (2016). Recycling of dimensional stone waste in concrete: a review. Journal of Cleaner Production, 135, 312–331.

    Article  Google Scholar 

  • Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering, 83, 52–59.

    Article  CAS  Google Scholar 

  • Rodrigues, A. S. L., Mesak, C., Silva, M. L. G., Silva, G. S., Leandro, W. M., & Malafaia, G. (2017). Organic waste vermicomposting through the addition of rock dust inoculated with domestic sewage wastewater. Journal of Environmental Management, 196, 651–658.

    Article  CAS  Google Scholar 

  • Sabiha-Javied, T., Mehmood, T., Chaudhry, M. M., Tufail, M., & Irfan, N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91, 94–99.

    Article  CAS  Google Scholar 

  • Saueia, C. H. R., Mazzilli, B. P., Bourlegat, F. M. L. & Costa, G. J. L. (2013). Distribution of potentially toxic elements in the Brazilian phosphogypsum and phosphate fertilizers. E3S Web of Conferences, 1, 1–4.

  • Schmidt, C. W. (2015). In search of “just right”: the challenge of regulating arsenic in rice. Environmental Health Perspectives, 123, 16–19.

    Google Scholar 

  • Silvestre, C. P., Bertolino, L. C., & Melo, V. P. (2014). A produção de rochas ornamentais no noroeste do estado do Rio de Janeiro: Santo Antônio de Pádua e Italva. Revista Tamoios, 10, 114–127.

    Article  Google Scholar 

  • Singh, K., Oates, C., Planta, J., & Voulvoulis, N. (2014). Undisclosed chemicals — implications for risk assessment: a case study from the mining industry. Environment International, 68, 1–15.

    Article  CAS  Google Scholar 

  • Souza, M. E. P., Cardoso, I. M., Carvalho, A. M. X., Lopes, A. P., Jucksch, I., & Janssen, A. (2018). Rock powder can improve vermicompost chemical properties and plant nutrition: an on-farm experiment. Communications in Soil Science and Plant Analysis, 49, 1–12.

    Article  Google Scholar 

  • Toselli, M., Baldi, E., Marcolini, G., Malaguti, D., Quartieri, M., Sorrenti, G., & Marangoni, B. (2009). Response of potted grapevines to increasing soil copper concentration. Australian Journal of Grape and Wine Research, 15, 85–92.

    Article  CAS  Google Scholar 

  • Williams, P. N., Lei, M., Sun, G., Huang, Q., Lu, Y., Deacon, C., Meharg, A. A., & Zhu, Y. (2009). Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science and Technology, 43, 637–642.

    Article  CAS  Google Scholar 

  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council of Scientific and Technological Development (CNPq) and the Ministry of Agriculture, Livestock, and Supply (MAPA) for their support and incentive in the execution of this work.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—finance code 001. F. L. F. Silva acknowledges financial support from CAPES in the form of a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo de O. Souza.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitó, C.V.G., Vieira, H.G., Ferrarez, A.H. et al. Inorganic content of rock dust waste from northwest of Rio de Janeiro, Brazil: do environmental risks incur from its use as natural fertilizer?. Environ Monit Assess 192, 380 (2020). https://doi.org/10.1007/s10661-020-08348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08348-5

Keywords

Navigation