Skip to main content
Log in

Automated calibration of the EPA-SWMM model for a small suburban catchment using PEST: a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rainfall-runoff models must be calibrated and validated before they can be used for urban stormwater management. Manual calibration is very difficult and time-consuming due to the large number of model parameters that must be estimated concurrently. Automatic calibration offers as a promising alternative, ideally supporting a user-independent and time-efficient approach to model parameters estimation. In this article, we test the use of a state-of-the-art standard package (PEST, Parameter ESTimation, http://www.pesthomepage.org/) for the automatic calibration of a rainfall-runoff EPA-SWMM (Storm Water Management Model) model developed for a small suburban catchment. Results reported in the paper demonstrate that the performance of automatically calibrated models still depends on a number of user-dependent choices (the level of catchment discretization, the selection of significant parameters, the optimization techniques adopted). Through a systematic analysis of the results, we try to identify the guidelines for the effective use of automatic calibration procedures based on modeling assumptions and target of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alamdari, N., & Sample, D. J. (2019). A multiobjective simulation-optimization tool for assisting in urban watershed restoration planning. Journal of Cleaner Production, 213, 251–261.

    Article  Google Scholar 

  • Bahrami, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2019). Optimizing stormwater low-impact development strategies in an urban watershed considering sensitivity and uncertainty. Environmental Monitoring and Assessment, 191, 340. https://doi.org/10.1007/s10661-019-7488-y.

    Article  Google Scholar 

  • Biondi, D., Freni, G., Iacobellis, V., Mascaro, G., & Montanari, A. (2012). Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Physics and Chemistry of the Earth, 42(44), 70–76.

    Article  Google Scholar 

  • Blasone, R. S., Madsen, H., & Rosbjerg, D. (2007). Parameter estimation in distributed hydrological modelling: Comparison of global and local optimisation techniques. Nordic Hydrology, 38(4–5), 451–476.

    Article  Google Scholar 

  • Chau, K. W. (2004). Selection and calibration of numerical modeling in flow and water quality. Environmental Modeling and Assesment, 9, 169–178.

    Article  Google Scholar 

  • da Silva, M. G., de Oliveira de Aguiar Netto, A., de Jesus Neves, R. J., do Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity analysis and calibration of hydrological modeling of the watershed Northeast Brazil. Journal of Environmental Protection, 6, 837–850.

    Article  Google Scholar 

  • Dent, S., Blair Hanna, R., & Wright, L. (2004). Automated calibration using optimization techniques with SWMM RUNOFF. Journal of Water Management Modeling. https://doi.org/10.14796/JWMM.R220-18.

  • Doherty, J., Brebber, L., & Whyte, P. (2010). PEST: Model independent parameter estimation. Brisbane: Watermark Computing Trademarks.

    Google Scholar 

  • Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158, 265–284.

    Article  Google Scholar 

  • Duong, V. N., Binh, N. Q., Cuong, L. X., Ma, Q., & Gourbesville, P. (2016). Applying deterministic distributed hydrological model for stream flow data reproduction. A case study of Cu De catchment, Vietnam. Procedia Engineering, 154, 1010–1017.

    Article  Google Scholar 

  • Gupta, H. V., Sorooshian, S., Hogue, T. S., & Boyle, D. P. (2003). Advances in automatic calibration of watershed models. In Q. Duan, H. V. Gupta, S. Sorooshian, A. Rousseau, & R. Turcotte (Eds.), Calibration of watershed models. Washington, D.C.: American Geophysical Union.

    Google Scholar 

  • Hill, M. C. (1998). Methods and guidelines for effective model calibration. Denver, Colorado: U.S. Geological Survey.

    Google Scholar 

  • Kean, S., Chye, L., Shuy, E., Yat-Man, E., & Wan, L. (2008). Performances of rainfall-runoff models calibrated over single and continuous storm flow events. Journal of Hydrologic Engineering, 13(7), 597–607.

    Article  Google Scholar 

  • Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advanced in Geosciences (ADGEO), 5, 89–97.

    Article  Google Scholar 

  • Legates, D. R., & McCabe Jr., G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35, 233–241. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/1998WR900018

    Article  Google Scholar 

  • Liu, Y. B., & Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resources Research, 43. https://doi.org/10.1029/2006WR005756.

  • Liu, Y. B., Batelaan, O., De Smedt, F., Poόrová, J., & Velciká, L. (2005). Automated calibration applied to a GIS-based flood simulation model using PEST. In Proceedings of the 3rd international symposium on flood Defence. Nijmegen: CRC Press.

    Google Scholar 

  • Madsen, H. (2000). Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235(3–4), 276–288.

    Article  Google Scholar 

  • Madsen, H., & Jacobsen, T. (2001). Automatic calibration of the MIKE SHE integrated hydrological modelling system, Proceedings of 4thDHI software conference. Helsinger.

  • Mancipe, N. A., Buchberger, S., & Suidan, M. (2012). Calibration of distributed rainfall-runoff model in Hamilton County, Ohio. Journal of Water Management Modeling. https://doi.org/10.14796/JWMM.R245-11.

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Ngamalieu-Nengoue, U. A., Iglesias-Rey, P. L., Martinez-Solano, F. J., Mora-Melia, D., & Valderrama, J. G. S. (2019). Urban drainage network rehabilitation considering storm tank installation and pipe substitution. Water, 11, 515.

    Article  Google Scholar 

  • Pauwels, V. R. N. (2008). A multistart weight-adaptive recursive parameter estimation method. Water Resources Research, 44. https://doi.org/10.1029/2007WR005866.

  • Poeter, E. P., & Hill, M. C. (1997). Inverse models: A necessary next step in ground-water modeling. Ground Water, 35(2), 250–260.

    Article  CAS  Google Scholar 

  • Rossman, L. A. (2017). Storm Water Management Model reference manual volume II - hydraulics. Cincinnati: National Risk Management Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Rossman, L. A., & Huber, W. C. (2016). Storm Water Management Model reference manual volume I - hydrology (revised). Cincinnati: National Risk Management Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Skahill, B. E., & Doherty, J. (2006). Efficient accommodation of local minima in watershed model calibration. Journal of Hydrology, 329(1–2), 122–139.

    Article  Google Scholar 

  • Xu, Z., Xiong, L., Li, H., Xu, J., Cai, X., Chen, K., & Wu, J. (2019). Runoff simulation of two typical urban green land types with the Stormwater management model (SWMM): Sensitivity analysis and calibration of runoff parameters. Environmental Monitoring and Assessment, 191, 343. https://doi.org/10.1007/s10661-019-7445-9.

    Article  Google Scholar 

  • Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204, 83–97.

    Article  Google Scholar 

  • Zhou, Q., Lai, Z., & Blohm, A. (2019). Optimising the combination strategies for pipe and infiltration-based low impact development measures using a multiobjective evolution approach. Journal of Flood Risk Management, 12. https://doi.org/10.1111/jfr3.12457.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Perin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: PEST control parameter

Appendix: PEST control parameter

PHIRATSUF: fractional objective function sufficient for end of current iterations

PHIREDLAM: termination criterion for Marquardt lambda search

FACORIG: minimum fraction of original parameter value in evaluating relative change

PHIREDSWH: sets objective function change for introduction of central derivatives

PHIREDSTP: relative objective function reduction triggering termination

NPHISTP: number of successive iterations over which PHIREDSTP applies

NPHINORED: number of iterations since last drop in objective function to trigger termination

RELPARSTP: maximum relative parameter change triggering termination

NRELPAR: number of successive iteration over which RELPARSTP applies

ICOV: instruct PEST to record covariance matrix in matrix file

ICOR: instruct PEST to record correlation-coefficient matrix in matrix file

IEIG: instruct PEST to record eigenvectors in matrix file

DERINC: absolute or relative parameter increment

DERINCLB: absolute lower bound of relative parameter increment

DERINCMUL: derivative increment multiplier when undertaking central derivatives calculation

RLAMBDA1: initial Marquardt lambda

RLAMFAC: factor by which the Marquardt lambda is adjusted

NUMLAM: upper limit on the number of lambdas that PEST can test during any one optimization iteration

RELPARMAX: maximum relative change that a parameter is allowed to undergo between optimization iterations

FACPARMAX: maximum factor change that a parameter is allowed to undergo

NOPTMAX: maximum number of iterations that PEST is permitted to undertake on a particular parameter estimation run

INCTYP: method by which parameter increments are calculated

FORCEN: determines whether central derivatives calculation is done

DERMTHD: method of central derivatives calculation

PARCHGLIM: type of parameter change limit

PARTRANS: parameter transformation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perin, R., Trigatti, M., Nicolini, M. et al. Automated calibration of the EPA-SWMM model for a small suburban catchment using PEST: a case study. Environ Monit Assess 192, 374 (2020). https://doi.org/10.1007/s10661-020-08338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08338-7

Keywords

Navigation