Skip to main content

Advertisement

Log in

Exploring and quantifying the impact of climate change on surface water temperature of a high mountain lake in Central Europe

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lake surface water temperature (LSWT) is a key indicator which drives ecosystem structure and function. Quantifying the impact of climate change on LSWT variations is thus of great significance. In this study, observed data of LSWT during the period 1969–2018 in a high mountain lake (Morskie Oko Lake, Central Europe) were analyzed. The results showed that the prominent warming of the LSWT and air temperature began around 1997. A logistic non-linear S-curve function was used to model monthly average LSWT. The non-linear model performed well to capture monthly average LSWT and air temperature relationships (Nash-Sutcliffe efficiency coefficient 0.86 and the root mean squared error 1.63 °C). Using the 2009–2018 period as base scenario, a sensitivity analysis was conducted. The results showed that the annual mean LSWT will likely increase about + 1.29 °C and + 2.64 °C with air temperature increases of + 2 °C and + 4 °C respectively at the end of the twenty-first century. If realized, such a scenario will cause serious consequences on lake ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Åberg, J., Jansson, M., & Jonsson, A. (2010). Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake. Journal of Geophysical Research – Biogeosciences, 115(G2), G02024.

    Google Scholar 

  • Arismendi, I., Safeeq, M., Dunham, J. B., & Johnson, S. L. (2014). Can air temperature be used to project influences of climate change on stream temperature? Environmental Research Letters, 9, 084015.

    Google Scholar 

  • Austin, J., & Colman, S. (2008). A century of temperature variability in Lake Superior. Limnology and Oceanography, 53(6), 2724–2730.

    Google Scholar 

  • Beaulieu, M., Pick, F., & Gregory-Eaves, I. (2013). Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58(5), 1736–1746.

    CAS  Google Scholar 

  • Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30, 3315–3329.

    Google Scholar 

  • Baulch, H. M., Schindler, D. W., Turner, M. A., Findlay, D. L., Paterson, M. J., & Vinebrooke, R. D. (2005). Effects of warming on benthic communities in a boreal lake: Implications of climate change. Limnology and Oceanography, 50(5), 1377–1392.

    Google Scholar 

  • Bonacci, O., Trninić, D., & Roje-Bonacci, T. (2008). Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrological Processes, 22, 1014–1021.

    Google Scholar 

  • Bonacci, O., & Oskoruš, D. (2010). The changes in the lower Drava river water level, discharge and suspended sediment regime. Environmental Earth Sciences, 59, 1661–1670.

    Google Scholar 

  • Cabała, J. (2005). Chrysophycean stomatocysts from Morskie Oko and Żabie Oko lakes in the Tatra National Park, Poland. Acta Societatis Botanicorum Poloniae, 74(4), 305–314.

    Google Scholar 

  • Choiński, A., Ptak, M., & Strzelczak, A. (2013). Areal variation in ice cover thickness on lake Morskie Oko (Tatra Mountains), Carpathian. Journal of Earth and Environmental Sciences, 8(3), 97–102.

    Google Scholar 

  • Choiński, A., & Strzelczak, A. (2018). Variability of short-term diel water temperature amplitudes in a mountain lake. Water, 10(6), 795.

    Google Scholar 

  • Christianson, K. R., Johnson, B. M., Hooten, M. B., & Roberts, J. J. (2019). Estimating lake–climate responses from sparse data: an application to high elevation lakes. Limnology and Oceanography, 64(3), 1371–1385.

    Google Scholar 

  • Czernecki, B., & Ptak, M. (2018). The impact of global warming on lake surface water temperature in Poland-the application of empirical-statistical downscaling, 1971-2100. Journal of Limnology, 77(2), 330–348.

    Google Scholar 

  • Debnath, M., Syiemlieh, H. J., Sharma, M. C., Kumar, R., Chowdhury, A., & Lal, U. (2018). Glacial lake dynamics and lake surface temperature assessment along the Kangchengayo-Pauhunri massif, Sikkim Himalaya, 1988–2014. Remote Sensing Applications: Society and Environment, 9, 26–41.

    Google Scholar 

  • Deng, J., Qin, B., Paerl, H. W., Zhang, Y., Ma, J., & Chen, Y. (2014). Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshwater Biology, 59(5), 1076–1085.

    Google Scholar 

  • Dokulil, M. T. (2014). Impact of climate warming on European inland waters. Inland Waters, 4(1), 27–40.

    Google Scholar 

  • Dynowski, P., Senetra, A., Źróbek-Sokolnik, A., & Kozłowski, J. (2019). The impact of recreational activities on aquatic vegetation in alpine lakes. Water, 11(1), 173.

    Google Scholar 

  • Gu, H., Jin, J., Wu, Y., Ek, M. B., & Subin, Z. M. (2015). Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129(3–4), 471–483.

    Google Scholar 

  • Hampton, S. E., Izmest’eva, L. R., Moore, M. V., Katz, S. L., Dennis, B., & Silow, E. A. (2008). Sixty years of environmental change in the world’s largest freshwater Lake–Lake Baikal, Siberia. Global Change Biology, 14, 1947–1958.

    Google Scholar 

  • Jeppesen, E., Mehner, T., Winfield, I. J., et al. (2012). Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia, 694(1), 1–39.

    CAS  Google Scholar 

  • Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., & Marshall, L. (2012). Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrological Processes, 26, 771–785.

    Google Scholar 

  • Li, Y., Acharya, K., Chen, D., & Stone, M. (2010). Modeling water ages and thermal structure of Lake Mead under changing water levels. Lake and Reservoir Management, 26, 258–272.

    CAS  Google Scholar 

  • Mantua, N., Tohver, I., & Hamlet, A. (2010). Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington state. Climatic Change, 102, 187–223.

    Google Scholar 

  • Mason, L. A., Riseng, C. M., Gronewold, A. D., Rutherford, E. S., Wang, J., Clites, A., Smith, S. D. P., & McIntyre, P. B. (2016). Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Climatic Change, 138(1–2), 71–83.

  • Matulla, C., Tordai, J., Schlögl, M., Ganekind, M., Matulla, H., Ressl, H., & Chimani, B. (2019). Establishment of a long-term lake-surface temperature dataset within the European Alps extending back to 1880. Climate Dynamics, 52(9–10), 5673–5689.

    Google Scholar 

  • Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218, 128–141.

    Google Scholar 

  • Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water Resources Research, 34(10), 2685–2692.

    Google Scholar 

  • Mohseni, O., Erickson, T. R., & Stefan, H. G. (1999). Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resources Research, 35(12), 3723–3733.

    Google Scholar 

  • Mohseni, O., Stefan, H. G., & Eaton, J. G. (2003). Global warming and potential changes in fish habitat in U.S. streams. Climatic Change, 59(3), 389–409.

    CAS  Google Scholar 

  • Mooij, W. M., De Senerpont Domis, L. N., & Hülsmann, S. (2008). The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. Journal of Sea Research, 60, 32–43.

    Google Scholar 

  • Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), 139–146.

    CAS  Google Scholar 

  • Moser, K. A., Baron, J. S., Brahney, J., et al. (2019). Mountain lakes: eyes on global environmental change. Global and Planetary Change, 178, 77–95.

    Google Scholar 

  • Naumenko, M. A., Guzivaty, V. V., & Karetnikov, S. G. (2006). Climatic trends of the water surface temperature in Lake Ladoga during ice-free periods. Doklady Earth Sciences, 409, 750–753.

    CAS  Google Scholar 

  • Novikmec, M., Svitok, M., Kočický, D., Šporka, F., & Bitušík, P. (2013). Surface water temperature and ice cover of Tatra Mountains Lakes depend on altitude, topographic shading, and bathymetry. Arctic, Antarctic, and Alpine Research, 45(1), 77–87.

    Google Scholar 

  • O’Reilly, C. M., Sharma, S., Gray, D. K., et al. (2015). Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), 10773–10781.

    Google Scholar 

  • Piccolroaz, S., Toffolon, M., & Majone, B. (2013). A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrology and Earth System Sciences, 17, 3323–3338.

    Google Scholar 

  • Piccolroaz, S., Healey, N. C., Lenters, J. D., Schladow, S. G., Hook, S. J., Sahoo, G. B., & Toffolon, M. (2018). On the predictability of lake surface temperature using air temperature in a changing climate: a case study for Lake Tahoe (U.S.A.). Limnology and Oceanography, 63(1), 243–261.

    Google Scholar 

  • Posch, T., Köster, O., Salcher, M. M., & Pernthaler, J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2(11), 809–813.

    CAS  Google Scholar 

  • Ptak, M., Wrzesiński, D., & Choiński, A. (2017). Long-term changes in the hydrological regime of high mountain Lake Morskie Oko (Tatra Mountains, Central Europe). Journal of Hydrology and Hydromechanics, 65(2), 146–153.

    Google Scholar 

  • Ptak, M., Sojka, M., Choiński, A., & Nowak, B. (2018). Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water, 10, 580.

    Google Scholar 

  • Roberts, J. J., Fausch, K. D., Schmidt, T. S., & Walters, D. M. (2017). Thermal regimes of Rocky Mountain lakes warm with climate change. PLoS One, 12, e0179498.

    Google Scholar 

  • Schneider, P., & Hook, S. J. (2010). Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters, 37(22), L22405.

    Google Scholar 

  • Segura, C., Caldwell, P., Sun, G., McNulty, S., & Zhang, Y. (2015). A model to predict stream water temperature across the conterminous USA. Hydrological Processes, 29, 2178–2195.

    Google Scholar 

  • Sharma, S., Walker, S. C., & Jackson, D. A. (2008). Empirical modelling of lake water-temperature relationships: a comparison of approaches. Freshwater Biology, 53(5), 897–911.

    Google Scholar 

  • Świerz, L. (1885). Pomiary ciepłoty stawów tatrzańskich w różnych warstwach głębokości. Pamiętnik Towarzystwa Tatrzańskiego, 10.

  • Thompson, R., Ventura, M., & Camarero, L. (2009). On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change. Freshwater Biology, 54(12), 2433–2451.

    CAS  Google Scholar 

  • Toffolon, M., Piccolroaz, S., Majone, B., Soja, A. M., Peeters, F., Schmid, M., & Wüest, A. (2014). Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography, 59(6), 2185–2202.

    Google Scholar 

  • van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., & Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47(2), W02544.

    Google Scholar 

  • Verburg, P., Hecky, R. E., & Kling, H. (2003). Ecological consequences of a century of warming in Lake Tanganyika. Science, 301(5632), 505–507.

    CAS  Google Scholar 

  • Weinberger, S., & Vetter, M. (2012). Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee. Ecological Modelling, 244, 38–48.

    Google Scholar 

  • Woolway, R. I., Dokulil, M. T., Marszelewski, W., Schmid, M., Bouffard, D., & Merchant, C. J. (2017). Warming of central European lakes and their response to the 1980s climate regime shift. Climate Change, 142(3–4), 505–520.

    Google Scholar 

  • Wrzesiński, D., Choiński, A., & Ptak, M. (2016). Effect of North Atlantic Oscillation on the hydrological conditions of Lake Morskie Oko (Carphatian Mountains). Bulletin of Geography. Physical Geography Series, 10, 95–105.

    Google Scholar 

  • Zhu, S., Nyarko, E. K., & Hadzima-Nyarko, M. (2018). Modelling daily water temperature from air temperature for the Missouri River. PeerJ, 6, e4894.

    Google Scholar 

  • Zhu, S., Nyarko, E. K., Hadzima-Nyarko, M., Heddam, S., & Wu, S. (2019). Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ, 7, e7065.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Institute of Meteorology and Water Management–National Research Institute in Poland for providing the data used in this study.

Funding

This work was jointly funded by the National Key R&D Program of China (2018YFC0407200), the China Postdoctoral Science Foundation (2018M640499), Yellow River Institute of Hydraulic Research Scientific Development Fund (201910), and the research project from Nanjing Hydraulic Research Institute (Y118009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Ptak, M., Choiński, A. et al. Exploring and quantifying the impact of climate change on surface water temperature of a high mountain lake in Central Europe. Environ Monit Assess 192, 7 (2020). https://doi.org/10.1007/s10661-019-7994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7994-y

Keywords

Navigation