Skip to main content

Advertisement

Log in

Assessment of groundwater pollution near Aba-Eku municipal solid waste dumpsite

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Municipal solid waste (MSW) dumpsite constitutes a major anthropogenic point source of leachate contamination to the ambient groundwater and poses a significant threat to the geo-ecosystem. This study investigated the pollution of groundwater by leachate emanating from Aba-Eku MSW dumpsite in Ibadan, Nigeria, using bacteriological, hydrochemical, and geophysical techniques. There is a diversity of bacteria in the leachate and the dominant phyla being proteobacteria (83%) and firmicutes (17%). The mean concentrations (mg/L) of Mn, Fe, Al, Cu, Mo, and Cr in the leachate samples were above the World Health Organization wastewater discharge limits. The hydrochemical parameters of the groundwater samples around the dumpsite were generally within the permissible limits, except for K and Cl; which invariably indicate major inputs from water-rock interaction and minor contributions from the dumpsite. Three geoelectrical layers were indicated from the vertical electrical sounding data, which are the topsoil, the lateritic clay layer, and the weathered basement. Low resistivity values of 5–33 Ωm and 3–24 Ωm were obtained within 2 m and 5.5 m depths for the topsoil and the lateritic layer, respectively; while the 2-D subsurface model reveals leachate plume beyond 5 m. Although the MSW leachate is heterogeneous, the hydrochemical data show that the aquifer around the dumpsite has not been seriously polluted with the leachate, but there is a continuous percolation of leachate into the soil subsurface, based on the geophysical findings. Discontinuing waste dumping and groundwater extraction, which would over time reduce the leachate plume, are measures to enhance the groundwater quality in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Salam, M. M., & Abu-Zuid, G. J. (2015). Impact of landfill leachate on the groundwater quality: a case study in Egypt. Journal of Advance Research, 6(4), 579–586.

    CAS  Google Scholar 

  • Abdelwaheb, A., Moncef, Z., & Hamed, B. D. (2012). Landfill leachate generation and its impact on water at urban landfill (Jabel Chakir, Tunisia). Hydrology: Current Research, 3, 128.

    Google Scholar 

  • Abimbola, A. F., Laniyan, T. A., Okunola, O. W., Odewande, A. A., Ajibade, O. M., & Kolawole, T. (2005). Water quality test of areas surrounding selected refuse dumpsites in Ibadan, southwestern Nigeria. Water Resources, 16, 39–48.

    Google Scholar 

  • Aluko, O. O., & Sridhar, M. K. C. (2005). Application of constructed wetlands to the treatment of leachate from a MSW landfill in Ibadan, Nigeria. Journal of Environmental Health, 67(10), 58–62.

    CAS  Google Scholar 

  • Ameloko, A. A., & Ayolabi, E. A. (2008). Geophysical assessment for vertical leachate migration profile and physicochemical study of groundwater around Olusosan dumpsite Lagos, southwest Nigeria. Applied Water Science, 8, 42.

    Google Scholar 

  • American Public Health Association (APHA). (1998). Standard methods for examination of water and wastewater (18th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Amuda, O. S., Adebisi, S. A., Jimoda, L. A., & Alade, A. O. (2014). Challenges and possible panacea to the MSW management in Nigeria. Journal of Sustainable Development Studies, 6(1), 64–70.

    Google Scholar 

  • Annepu, R. K. (2012). Sustainable solid waste management in India. MSc. Project. Earth Engineering Centre, Columbia University, New York, USA 50 pp.

  • Ariyo, S. O., Omosanya, K. O., & Oshinloye, B. A. (2013). Electrical resistivity imaging of contaminant zone at Sotubo dumpsite along Sagamu-Ikorodu, southwestern Nigeria. African Journal of Environmental Science and Technology, 7, 312–320.

    CAS  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1993). Microbial ecology fundamentals and application. Third Edition, The Benjamin/Cummings Canada, 559 pp.

  • Ayuba, K. A., Manaf, L. A., Sabrina, A. H., & Azmin, S. W. N. (2013). Current status of MSW management in FCT Abuja. Research Journal of Environmental and Earth Sciences, 5(6), 295–304.

    Google Scholar 

  • Bailey, B. L., Smith, L. J. D., Blowes, D. W., Ptacek, C. J., Smith, L., & Sego, D. C. (2013). Diavik waste rock project: persistence of contaminants from blasting agents in waste rock effluent. Applied Geochemistry, 36, 256–270.

    CAS  Google Scholar 

  • Banar, M., Ozkan, A., & Kurkcuoglu, M. (2006). Characterization of leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GCMS. Environmental Monitoring and Assessment, 121, 439–459.

    CAS  Google Scholar 

  • Benson, R. C. (1993). Geophysical techniques for subsurface site characterization. In D. E. Daniel (Ed.), Geotechnical Practice for Waste Disposal (pp. 311–357). London: Chapman and Hall.

    Google Scholar 

  • Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping groundwater contamination using DC resistivity and VLF geophysical methods: a case study. Geophysics, 62, 80–86.

  • Bichet, V., Grisey, E., & Aleya, L. (2016). Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Engineering Geology, 211, 61–73.

    Google Scholar 

  • Blackmore, S., Pedretti, D., Mayer, K. U., Smith, L., & Beckie, R. D. (2018). Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles. Journal of Contaminant Hydrology, 214, 65–74.

    CAS  Google Scholar 

  • Cardarelli, E., & Bernabini, M. (1997). Two case studies of the determination of parameters of urban waste dumps. Journal of Applied Geophysics, 36, 167–174.

    Google Scholar 

  • Christensen, J. B., Tipping, E., Kinniburgh, D. G., Grøn, C., & Christensen, T. H. (1998). Proton binding by groundwater fulvic acids of different age, origin and structure modeled with Model V and the NICA-Donnan Model. Environmental Science and Technology, 32, 3346–3355.

    CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H.-J., & Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.

    CAS  Google Scholar 

  • Christenson, S. C., Scholl, M. A., Schlottmann, J. L., & Becker, C. J. (1999). Groundwater and surface water hydrology of the Norman landfill research site. US Geological Survey Water Resources Investigation Report no. 99-4018C, Reston, VA.

  • Darnault, C. J. D., Steenhuis, T. S., Garnier, P., Kim, Y. J., Jenkins, M. B., Ghiorse, W. C., Beveye, P. C., & Parlange, J. Y. (2004). Preferential flow and transport of Cryptosporidium parvum oocyst through the vadose zone: experimenting and modeling. Vadose Zone Journal, 3(2), 262–270.

    Google Scholar 

  • Ehinola, O. A. (2002). Hydrochemical characteristics of groundwater in parts of the Basement Complex of southwestern Nigeria. Journal of Mining and Geology, 38(2), 125–133.

    Google Scholar 

  • El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental impact of solid waste landfilling. Journal of Environmental Management, 50(1), 1–25.

    Google Scholar 

  • Fadiran, A. O., Dlamini, S. C., & Mavuso, A. (2008). A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland. Bulletin of Chemical Society of Ethiopia, 22(2), 197–206.

    CAS  Google Scholar 

  • Fernandez, D. S., Puchulu, M. E., & Georgieff, S. M. (2014). Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucuman, Argentina). Environmental Geochemistry and Health, 36, 489–503.

    CAS  Google Scholar 

  • Ganiyu, S. A., Badmus, B. S., Oladunjoye, M. A., Aizebeokhai, A. P., & Olurin, O. T. (2015). Delineation of leachate plume migration using electrical resistivity imaging on Lapite Dumpsite in Ibadan, southwestern Nigeria. Geoscience, 5(2), 70–80.

    Google Scholar 

  • Gerba, C. P., & Smith, J. E. (2005). Source of pathogenic microorganisms and their fate during land application of waste. Journal of Environmental Quality, 34, 42–48.

    CAS  Google Scholar 

  • Gerba, C. P., Tamimi, A. H., Pettigrew, C., Weisbrod, A. V., & Rajagopalan, V. (2011). Sources of microbial pathogens in municipal solid waste landfills in the USA. Waste Management and Research, 29(8), 781–790.

    Google Scholar 

  • Giang, N. V., Kochanek, K., Vu, N. T., & Duan, N. B. (2018). Landfill leachate assessment by hydrological and geophysical data: case study of NamSon, Hanoi, Vietnam. Journal of Material Cycle and Waste Management, 20, 1648–1662.

    Google Scholar 

  • Gomez, A. M., Yannarell, A. C., Sims, G. K., & Cadavid-Restrepo, G. (2011). Characterization of bacterial diversity at different depth in the Moravia Hill landfill site at Medellin, Colombia. Soil Biology and Biochemistry, 43, 1275–1284.

    CAS  Google Scholar 

  • Hamza, U., Jeeva, M., & Ali, N. A. M. (2014). Electrical resistivity technique and chemical analysis in the study of leachate migration at Sungai Sedu landfill. Asian Journal of Applied Sciences, 7, 518–535.

    Google Scholar 

  • Han, D., Tong, X., Currell, M. J., Cao, G., Jin, M., & Tong, C. (2014). Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. Journal of Geochemical Exploration, 136, 24–39.

    CAS  Google Scholar 

  • Huang, L. N., Zhou, H., Zhu, S., & Qu, L. H. (2004). Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbial Ecology, 50, 175–183.

    CAS  Google Scholar 

  • Huang, L., Zhu, S., Zhou, H., & Qu, L. (2005). Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Letters, 242, 297–303.

    CAS  Google Scholar 

  • Ikem, A., Osibanjo, O., Shridhar, M. K. C., & Sobande, A. (2002). Evaluation of groundwater quality characteristics near two waste sites in Ibadan and Lagos, Nigeria. Water, Air and Soil Pollution, 140, 307–333.

    CAS  Google Scholar 

  • Jabari, L., Gannoun, H., Khelifi, E., Cayol, J. L., Godon, J. J., Handi, M., & Fardeau, M. L. (2016). Bacterial ecology of abattoir wastewater treated by an anaerobic digester. Brazilian Journal of Microbiology, 47(1), 73–84.

    CAS  Google Scholar 

  • Jorstad, L. B., Jankowski, J., & Acworth, R. I. (2004). Analysis of the distribution of inorganic constituents in a landfill leachate contaminated aquifers Astrolabe Park, Sydney, Australia. Environmental Geology, 46, 263–272.

    CAS  Google Scholar 

  • Kale, S. S., Kadam, A. K., Kumar, S., & Pawar, N. J. (2010). Evaluating pollution potential of leachate from landfill site from the Pune Metropolitan City and its impact on shallow basaltic aquifer. Environmental Monitoring and Assessment, 162, 327–346.

    CAS  Google Scholar 

  • Kanownik, W., & Policht-Latawiec, A. (2016). Impact of municipal landfill site on groundwater quality in the Wlosanka stream. Journal of Ecological Engineering, 17(4), 57–64.

    Google Scholar 

  • Kaya, M. A., Ozurlan, G., & Sengul, E. (2007). Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Canakkale, Turkey. Environmental Monitoring and Assessment, 135, 441–446.

    CAS  Google Scholar 

  • Kehew, A. E. (2001). Applied chemical hydrogeology (368p). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32, 297–336.

    CAS  Google Scholar 

  • Krishnamurthi, S., & Chakrabarti, T. (2013). Diversity of bacteria and archaea from a landfill in Chandigarh, India is revealed by culture-dependent and culture-independent molecular approaches. Systematic and Applied Microbiology, 36, 56–68.

    CAS  Google Scholar 

  • Kumar, D., & Alappat, B. J. (2005). Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technologies and Environmental Policy, 7, 190–197.

    CAS  Google Scholar 

  • Ludvigsen, L., Albrechtsen, H.-J., Ringelberg, D. B., Ekelund, F., & Christensen, T. H. (1999). Composition and distribution of microbial biomass in a landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecology, 37, 197–207.

    CAS  Google Scholar 

  • McBean, E. A., Rovers, F. A., & Farquhar, G. J. (1995). Solid waste landfill engineering and design. Prentice Hall, New Jersey, 521.

  • Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2992–2996.

    Google Scholar 

  • Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near landfill site. Environmental Monitoring and Assessment, 118, 435–456.

    CAS  Google Scholar 

  • Mosuro, G. O., Omosanya, K. O., Bayewu, O. O., Oloruntola, M. O., Laniyan, T. A., Atobi, O., Okebena, M., Popoola, E., & Adekoya, F. (2017). Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method. Applied Water Science, 7, 2195–2207.

    CAS  Google Scholar 

  • Munir, S., Tabinda, A. B., Ilyas, A., & Mushtaq, T. (2014). Characterization of leachate and leachate pollution index (LPI) from dumping site in Lahore, Pakistan. Journal of Applied Environmental Biological Sciences, 4(4), 165–170.

    Google Scholar 

  • Naveen, B. P., Sivapullaiah, P. V., & Sitharam, T. G. (2014). Characteristics of a municipal solid waste landfill leachate. Proceedings of Indian Geotechnical Conference IGC, Kakinada, India pp. 1–7.

  • Niloufer, S., Swamy, A. V. V. S., & Davi, K. S. (2013). Impact of municipal solid waste on the groundwater quality in Vijayawada City, Andhra Pradesh. Indian Journal of Applied Research, 3(4), 1–3.

    Google Scholar 

  • NPC. (2006). National Population Commission of Nigeria. www.population.gov.ng.

  • NSDWQ. (2008). Nigeria standard for drinking water quality, Nigeria Industrial Standard, Approved by Standard Organization of Nigeria Governing Council ICS 13.060.20: 15–19.

  • Ogunsanwo, O., & Mands, E. (1999). The role of Geology in the evaluation of waste disposal sites. Journal of Mining and Geology, 35(1), 83–87.

    Google Scholar 

  • Ogunseiju, P., Ajayi, T. R., & Olarenwaju, V. O. (2015). Trace metals and hydraulic characterization of soil and groundwater around Ajakanga dumpsite in Ibadan Metropolis. Journal of Environmental and Earth Sciences, 5(22), 75–94.

    Google Scholar 

  • Oguntoke, O., Aboderin, O. J., & Bankole, A. M. (2009). Association of water borne disease morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzanian Journal of Health Research, 11(4), 189–195.

    CAS  Google Scholar 

  • Oketola, A. A., & Akpotu, S. O. (2015). Assessment of solid waste and dumpsite leachate and topsoil. Chemistry and Ecology, 31(2), 134–146.

    CAS  Google Scholar 

  • Oladunjoye, M. A., Olayinka, A. I., & Amidu, S. A. (2011). Geoelectrical imaging at an abandoned waste dumpsite in Ibadan, southwestern Nigeria. Journal of Applied Sciences, 11, 3755–3764.

    Google Scholar 

  • Olayinka, A. I., & Olayiwola, M. A. (2001). Integrated use of geoelectrical imaging and hydrochemical methods in delineating limits of polluted surface and groundwater at a landfill site in Ibadan area, southwestern Nigeria. Journal of Mining and Geology, 37(1), 55–68.

    Google Scholar 

  • Olobaniyi, S. B., Ogala, J. E., & Nfor, N. B. (2007). Hydrogeochemical and bacteriological investigation in Agbor area, southern Nigeria. Journal of Mining and Geology, 43(1), 79–89.

    Google Scholar 

  • Onu, N. N., & Ibe, K. M. (1998). Geophysical investigation for groundwater in Idah, Lower Benue Trough, Nigeria. Journal of Mining and Geology, 34(1), 43–53.

    Google Scholar 

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51–67.

    Google Scholar 

  • Pedretti, D., Mayer, K. U., & Beckie, R. D. (2017). Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: controls of the spatial distribution of acid generating and neutralizing minerals. Journal of Contaminant Hydrology, 201, 30–38.

    CAS  Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in geochemical interpretation of water analysis. Transactions of American Geophysical Union, 25, 914–923.

    Google Scholar 

  • Pujari, P. R., Pardhi, P., Muduli, P., Harkare, P., & Nanoti, M. V. (2007). Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environmental Monitoring and Assessment, 131, 489–500.

    CAS  Google Scholar 

  • Rahaman, M. A. (1988). Recent advances in the study of the Basement Geology of Nigeria. In: Oluyide, P. O., Mbonu, W. C., Ogezi, A. E., Egbuniwe, A. C., Ajibade, A. C. and Umeji, A. C. (Eds.), Precambrian Geology of Nigeria (pp. 157-163). Geological Survey of Nigeria Special Publication.

  • Rahaman, A. A., & Lancelot, J. R. (1984). Continental crust evolution in SW Nigeria: constraints from U-Pb dating of pre-Pan-African gneisses. Rapport d’activite 1980-1984. Documents et Travaux du Centre Geologique et Geophysique de Montpellier II 4:41.

  • Raman, N., & Narayanan, D. S. (2008). Impact of solid waste effect on groundwater and soil quality nearer to Pallavaran solid waste landfill site in Chennai. Rasayan Journal of Chemistry, 1(4), 828–836.

    CAS  Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. New York: Longman Scientific and Technical 351p.

    Google Scholar 

  • Salami, L., Fadayini, M. O., & Madu, C. (2014). Assessment of a closed dumpsite and its impact on surface and groundwater integrity: a case of Ofe-Afa dumpsite, Lagos, Nigeria. International Journal of Research and Reviews in Applied Sciences, 18(3), 222–230.

    Google Scholar 

  • Sawamura, H., Yamada, M., Endo, K., Soda, S., Ishigaki, T., & Ike, M. (2010). Characterization of microorganisms at different landfill depths using carbon-utilization pattern and 16S rRNA gene based T-RFLP. Journal of Bioscience and Bioengineering, 109, 130–137.

    CAS  Google Scholar 

  • Shabiimam, M. A., & Dikshit, A. K. 2012. Treatment of municipal landfill leachate by oxidants. American Journal of Environmental Engineering, 2(2), 1–5.

  • Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of the Total Environment, 337, 119–137.

    CAS  Google Scholar 

  • Somashekar, R. K., & Sonza, P. D. (2013). Assessment of variation/temporal variation and leachate contamination potential of municipal solid waste dumpsite in Bangalore. International Journal of Environmental Protection, 3(1), 28–35.

    Google Scholar 

  • Song, L., Wang, Y., Tang, W., & Lei, Y. (2015). Bacterial community diversity in municipal waste landfill sites. Applied Microbiology and Biotechnology, 99, 7745–7756.

    CAS  Google Scholar 

  • Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Variability of parameters involve in leachate pollution index and determination of leachate pollution index from four landfills in Malaysia. International Journal of Chemical Engineering, 2010, 1–6.

    Google Scholar 

  • WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization 541p.

    Google Scholar 

  • Xie, B., Xiong, S., Liang, S., Hu, C., Zhang, X., & Lu, J. (2012). Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresource Technology, 103, 71–77.

    CAS  Google Scholar 

  • Ye, L., & Zhang, T. (2013). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Applied Microbiology and Biotechnology, 97(6), 2681–2690.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Institute of Hygiene and Public Health, University of Bonn, Germany for analysing the elemental components of the leachate samples. The efforts of Messrs. Andrew Akingbesote and Oladiran Aromolaran during geophysical surveys are gratefully acknowledged. Drs M. A. Fakunle, A. O. Ojo, and A. C. Oyelami are deeply appreciated for their stimulating discussions that helped to improve this manuscript. We are grateful to the editor for his valuable editorial comments and the reviewers for their highly insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olukemi Aromolaran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aromolaran, O., Fagade, O.E., Aromolaran, O.K. et al. Assessment of groundwater pollution near Aba-Eku municipal solid waste dumpsite. Environ Monit Assess 191, 718 (2019). https://doi.org/10.1007/s10661-019-7886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7886-1

Keywords

Navigation