Skip to main content

Advertisement

Log in

Variation in soil organic carbon stock with forest type in tropical forests of Kanyakumari Wildlife Sanctuary, Western Ghats, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sequestration of atmospheric carbon-dioxide in biospheric carbon (C) pools is a key strategy towards climate change mitigation. Soil is a huge C reservoir and its storage potential varies greatly with forest types. Therefore, in the present study, the soil organic carbon (SOC) storage pattern was assessed from 70 plots laid at three selected forest types comprising seven study sites at Kanyakumari Wildlife Sanctuary, Western Ghats, India: tropical dry deciduous (TDD I and TDD II), tropical semi-evergreen (TSE I and TSE II) and tropical evergreen forest (TEF I, TEF II and TEF III) at three depths (0–10, 10.1–20 and 20.1–30 cm). Statistical analyses were performed to understand the relationships between SOC stocks with other predictor variables. The SOC stock varied markedly with forest type and site-wise. The SOC ranged from 58 (TEF III) to 123.6 (TDD I) Mg C/ha with a mean of 84.9 ± 4.4 Mg C/ha at 0–30 cm depth. SOC stock decreased, while soil bulk density increased with increase in soil depth. The TDD forest type (115.6 Mg C/ha) stocked the highest SOC compared to TEF (75.1 Mg C/ha) and TSE (68.9 Mg C/ha) forest types. Of the total SOC stock (0–30 cm), 44.2, 32.0 and 23.8% were stored in 0–10, 10.1–20 and 20.1–30 cm respectively in all the forest types. In contrast, litter C stock were high in TEF and TSE forest types and low in TDD forest type. SOC showed significant (P < 0.01) negative relationships with bulk density, litter C, and vegetation attributes. The SOC stock stored in the study sites amount to 212.9 (TEF III) to 453.6 (TDD I) Mg of CO2 equivalents. The present study reveals that forest type and site characteristics have a profound impact on SOC stock, which would, in turn, exert a great bearing on the ecosystem C cycling. These results would also enhance our ability to evaluate the role of these forest types in soil C sequestration and for developing and validating SOC models for tropical forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abere, F., Belete, Y., Kefalew, A., & Soromessa, T. (2017). Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: an implication for climate change mitigation. Journal of Sustainable Forestry, 36, 604–622.

    Article  Google Scholar 

  • Adhikari, K., & Hartemink, A. E. (2017). Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 10, 115–125.

    Article  Google Scholar 

  • Anaya, C. A., & Huber-Sannwald, E. (2015). Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil and Tillage Research, 147, 20–29.

    Article  Google Scholar 

  • Andivia, E., Rolo, V., Jonard, M., Formánek, P., & Ponette, Q. (2016). Tree species identity mediates mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest. Annals of Forest Science, 73, 437–447.

    Article  Google Scholar 

  • Andriamananjara, A., Hewson, J., Razakamanarivo, H., Andrisoa, R. H., Ranaivoson, N., Ramboatiana, N., Razafindrakoto, M., Ramifehiarivo, N., Razafimanantsoa, M. P., Rabeharisoa, L., Ramananantoandro, T., Rasolohery, A., Rabetokotany, N., & Razafimbelo, T. (2016). Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems and Environment, 233, 1–15.

    Article  Google Scholar 

  • Araujo, M. A., Zinn, Y. L., & Lal, R. (2017). Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands. Geoderma, 300, 1–10. https://doi.org/10.1016/j.geoderma.2017.04.006.

    Article  CAS  Google Scholar 

  • Bangroo, S. A., Najar, G. R., & Rasool, A. (2017). Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena, 158, 63–68.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65, 10–21.

    Article  CAS  Google Scholar 

  • Berhe, A. A., Harden, J. W., Torn, M. S., & Harte, J. (2008). Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research: Biogeosciences, 113.

  • Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International, 8, 45–59.

    Article  Google Scholar 

  • Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization and the carbon saturation concept. Global Change Biology, 21, 3200–3209.

    Article  Google Scholar 

  • Cha, J. Y., Cha, Y. K., & Oh, N. H. (2019). The effects of tree species on soil organic carbon content in South Korea. Journal of Geophysical Research – Biogeosciences. https://doi.org/10.1029/2018JG004808.

  • Chan KY, Cowie A, Kelly G, Singh B, Slavich P (2009) Soil organic carbon sequestration potential for agriculture in NSW. In: NSW DPI Science & Research Technical Paper

  • Coleman, D. C. (1973). Soil carbon balance in a successional grassland. Oikos, 24, 195–199.

    Article  CAS  Google Scholar 

  • Dar, J. A., & Sundarapandian, S. (2015). Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environmental Monitoring and Assessment, 187, 11.

    Article  CAS  Google Scholar 

  • Debasish-Saha, Kukal, S. S., & Bawa, S. S. (2014). Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degradation and Development, 25, 407–416.

    Article  Google Scholar 

  • Devi, C. S., & Singh, T. B. (2016). Soil organic carbon stock in the sacred groves of Manipur, NE India. International Journal of Ecology and Environmental Sciences, 42, 115–123.

    Google Scholar 

  • Dinakaran, J., Hanief, M., Meena, A., & Rao, K. S. (2014). The chronological advancement of soil organic carbon sequestration research: a review. Proceeding of the National Academy of Sciences, India Section B: Biological Sciences, 84, 487–504.

    Article  CAS  Google Scholar 

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–190.

    Article  CAS  Google Scholar 

  • Ebasan, M. S., Aranico, E. C., Tampus, A. D., & Amparado Jr., R. F. (2016). Carbon stock assessment of three different forest covers in Panaon, Misamis Occidental, Philippines. J Bio Env Sci, 8, 252–264.

    Google Scholar 

  • ENVIS Centre, Tamil Nadu, 2018. http://tnenvis.nic.in/files/KANYAKUMARI%20%20.pdf.

  • Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., & Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149.

    Article  CAS  Google Scholar 

  • Forest Survey of India (FSI) (2017) India State of Forest Report 2017. http://fsi.nic.in/details.php?pgID=sb_64. Accessed 19 Apr 2019

  • Gandhi, D. S., & Sundarapandian, S. (2017). Soil carbon stock assessment in the tropical dry deciduous forest of the Sathanur reserve forest of Eastern Ghats, India. Journal of Sustainable Forestry, 36, 358–374.

    Google Scholar 

  • Grüneberg, E., Ziche, D., & Wellbrock, N. (2014). Organic carbon stocks and sequestration rates of forest soils in Germany. Global Change Biology, 20, 2644–2662.

    Article  Google Scholar 

  • Guerra-Santos, J. J., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Damián-Hernández, D. L., Sánchez-Junco, R. C., & Carrió, E. D. (2014). Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations. Journal of Forest Research, 25, 129–134.

    Article  CAS  Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2013). Sequestered organic carbon status in the soils under grassland in Uttarakhand State, India. Applied Ecology and Environmental Sciences, 1, 7–9.

    Article  CAS  Google Scholar 

  • Hiederer R, Köchy M (2011) Global soil organic carbon estimates and the harmonized world soil database. EUR 79(25225), Publications Office of the EU, Luxembourg

  • Hobley, E. U., & Wilson, B. (2016). The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere, 7(1). https://doi.org/10.1002/ecs2.1214.

  • Hobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. (2015). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390, 111–127.

    Article  CAS  Google Scholar 

  • Jha, M. N., Gupta, M. K., Saxena, A., & Kumar, R. (2003). Soil organic carbon store in different forests of India. Indian Forester, 129, 714–724.

    Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

    Article  Google Scholar 

  • Johnston, C. A., Groffman, P., Breshears, D. D., Cardon, Z. G., Currie, W., Emanuel, W., Gaudinski, J., Jackson, R. B., Lajtha, K., Nadelhoffer, K., Nelson Jr., D., Post, W. M., Retallack, G., & Wielopolski, L. (2004). Carbon cycling in soil. Frontiers in Ecology and the Environment, 2, 522–528.

    Article  Google Scholar 

  • Junior, P., Resende, L., Andrade, E. M. D., Palacio, H. A. Q., Raymer, P. C. L., Filho, J. C. R., & Pereira, F. J. S. (2016). Carbon stocks in a tropical dry forest in Brazil. Revista Ciência Agronômica, 47, 32–40.

    Google Scholar 

  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.

    Article  CAS  Google Scholar 

  • Lorenz, K., & Lal, R. (2009). Carbon sequestration in forest ecosystems. Netherlands: Springer Science & Business Media.

    Google Scholar 

  • Ma, W., Li, Z., Ding, K., Huang, B., Nie, X., Lu, Y., & Xiao, H. (2016). Soil erosion, organic carbon and nitrogen dynamics in planted forests: a case study in a hilly catchment of Hunan Province, China. Soil and Tillage Research, 155, 69–77.

    Article  Google Scholar 

  • Malhi, Y. A., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22, 715–740.

    Article  CAS  Google Scholar 

  • Maraseni, T. N., & Pandey, S. S. (2014). Can forest types work as an indicator of soil organic carbon? An insight from native vegetations in Nepal. Ecological Indicators, 46, 315–322.

    Article  CAS  Google Scholar 

  • Marinho, M. A., Pereira, M. W., Vázquez, E. V., Lado, M., & González, A. P. (2017). Depth distribution of soil organic carbon in an Oxisol under different land uses: stratification indices and multifractal analysis. Geoderma, 287, 126–134.

    Article  CAS  Google Scholar 

  • Mohanraj R, Saravanan J, Dhanakumar S (2011) Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest-Biogeosci For 4:61-65

  • N’Gbala, F. N. G., Guéi, A. M., & Tondoh, J. E. (2017). Carbon stocks in selected tree plantations, as compared with semi-deciduous forests in centre-west Côte d’Ivoire. Agriculture, Ecosystems and Environment, 239, 30–37.

    Article  Google Scholar 

  • Osuri, A. M., Kumar, V. S., & Sankaran, M. (2014). Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. Forest Ecology and Management, 329, 375–383.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Pascal, J. P. (1988). Wet evergreen forests of the Western Ghats of India. Pondicherry, India: French Institute of Pondicherry.

    Google Scholar 

  • Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Winrock International and the BioCarbon Fund of the World Bank.

    Google Scholar 

  • Pearson, T. R., Brown, S. L., & Birdsey, R. A. (2007). Measurement guidelines for the sequestration of forest carbon. US Department of Agriculture, Forest Service, Northern Research Station.

  • Pendall, E., Bridgham, S., Hanson, P. J., Hungate, B., Kicklighter, D. W., Johnson, D. W., Law, B. E., Luo, Y., Megonigal, J. P., Olsrud, M., Ryan, M. G., & Wan, S. (2004). Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. The New Phytologist, 162, 311–322.

    Article  Google Scholar 

  • Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159.

    Article  CAS  Google Scholar 

  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 10, 2052–2077.

    Article  Google Scholar 

  • Rolo, V., Olivier, P. I., Pfeifer, M., & van Aarde, R. J. (2018). Functional diversity mediates contrasting direct and indirect effects of fragmentation on below-and above-ground carbon stocks of coastal dune forests. Forest Ecology and Management, 407, 174–183.

    Article  Google Scholar 

  • Saner, P., Loh, Y. Y., Ong, R. C., & Hector, A. (2012). Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS One, 7, e29642.

    Article  CAS  Google Scholar 

  • Santos, L. T., Marra, D. M., Trumbore, S., Camargo, P. B., Negrón-Juárez, R. I., Lima, A. J., Ribeiro, G. H., Santos, J. D., & Higuchi, N. (2016). Windthrows increase soil carbon stocks in a Central Amazon forest. Biogeosciences, 12, 1299–1308.

    Article  CAS  Google Scholar 

  • Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81–91.

    Article  CAS  Google Scholar 

  • Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.

    Article  Google Scholar 

  • Schulp, C. J., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256, 482–490.

    Article  Google Scholar 

  • Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A., & Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. Forest Ecology and Management, 367, 62–70.

    Article  Google Scholar 

  • Shukla, G., Pala, N. A., & Chakravarty, S. (2017). Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. Journal of Forest Research, 28, 1195–1202.

    Article  CAS  Google Scholar 

  • Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243, 299–309.

    Article  Google Scholar 

  • Singh, H., Pathak, P., Kumar, M., & Raghubanshi, A. S. (2011). Carbon sequestration potential of Indo-Gangetic agroecosystem soils. Tropical Ecology, 52, 223–228.

    CAS  Google Scholar 

  • Sreekanth, N. P., Prabha, S. V., Padmakumar, B., & Thomas, A. P. (2013). Soil carbon alterations of selected forest types as an environmental feedback to climate change. International Journal of Environmental Sciences, 3, 1516–1530.

    Google Scholar 

  • Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Courcelles, V. R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164, 80–99.

    Article  CAS  Google Scholar 

  • Sulzman, E. W., Brant, J. B., Bowden, R. D., & Lajtha, K. (2005). Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochem, 73, 231–256.

    Article  Google Scholar 

  • Sun, X., Tang, Z., Ryan, M. G., You, Y., & Sun, O. J. (2019). Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. Forest Ecosystems, 6, 1.

    Article  CAS  Google Scholar 

  • Sundarapandian, S. M., & Swamy, P. S. (1999). Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. Forest Ecology and Management, 123, 231–244.

    Article  Google Scholar 

  • Sundarapandian, S. M., Dar, J. A., Gandhi, D. S., Srinivas, K., & Subashree, K. (2013). Estimation of biomass and carbon stocks in tropical dry forests in Sivagangai District, Tamil Nadu, India. International Journal of Environmental Science and Engineering Research, 4(3), 66–76.

    Google Scholar 

  • Sundarapandian, S. M., Amritha, S., Gowsalya, L., Kayathri, P., Thamizharasi, M., Dar, J. A., Srinivas, K., Gandhi, D. S., & Subashree, K. (2015). Soil organic carbon stocks in different land uses at Puthupet, Tamil Nadu, India. Research & Reviews: Journal of Ecology, 4(3), 6–14.

    Google Scholar 

  • Swamy, S. L., Dutt, C. B., Murthy, M. S., Mishra, A., & Bargali, S. S. (2010). Floristics and dry matter dynamics of tropical wet evergreen forests of Western Ghats, India. Current Science, 99, 353–364.

    CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2006). Plant physiology. Sunderland: Sinauer.

    Google Scholar 

  • Tan, W. F., Zhang, R., Cao, H., Huang, C. Q., Yang, Q. K., Wang, M. K., & Koopal, L. K. (2014). Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena, 121, 22–30.

    Article  CAS  Google Scholar 

  • Tang, J. W., Yin, J. X., Qi, J. F., Jepsen, M. R., & Lü, X. T. (2012). Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. Journal of Tropical Forest Science, 24, 399–407.

    Google Scholar 

  • Tran, D. B., & Dargusch, P. (2016). Melaleuca forests in Australia have globally significant carbon stocks. Forest Ecology and Management, 375, 230–237.

    Article  Google Scholar 

  • Tsui, C. C., Tsai, C. C., & Chen, Z. S. (2013). Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma, 209-210, 119–127.

    Article  CAS  Google Scholar 

  • Ullah, M. R., & Al-Amin, M. (2012). Above-and below-ground carbon stock estimation in a natural forest of Bangladesh. Journal of Forest Science, 58, 372–379.

    Article  Google Scholar 

  • Ullah, M. R., Banik, G. R., & Banik, R. (2014). Developing Allometric models for carbon stock estimation in eighteen year old plantation forests of Bangladesh. Jacobs Journal of Microbiology and Pathology, 1, 6.

    Google Scholar 

  • van der Sande, M. T., Arets, E. J., Peña-Claros, M., Hoosbeek, M. R., Cáceres-Siani, Y., van der Hout, P., & Poorter, L. (2017). Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32, 461–474.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wallenstein, M. D., Haddix, M. L., Ayres, E., Steltzer, H., Magrini-Bair, K. A., & Paul, E. A. (2013). Litter chemistry changes more rapidly when decomposed at home but converges during decomposition–transformation. Soil Biology and Biochemistry, 57, 311–319.

    Article  CAS  Google Scholar 

  • Wang, S., Zhuang, Q., Jia, S., Jin, X., & Wang, Q. (2018). Spatial variations of soil organic carbon stocks in a coastal hilly area of China. Geoderma, 314, 8–19.

    Article  CAS  Google Scholar 

  • Wantzen, K. M., Couto, E. G., Mund, E. E., Amorim, R. S., Siqueira, A., Tielbörger, K., & Seifan, M. (2012). Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agriculture, Ecosystems and Environment, 151, 70–79.

    Article  CAS  Google Scholar 

  • Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Luetzow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Liess, M., Garcia-Franco, N., Wollschlaeger, U., Vogel, H. J., & Kogel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162.

    Article  CAS  Google Scholar 

  • WorldClim-Global Climate Data (2018). Free climate data for ecological modelling and GIS. http://www.worldclim.org/

  • Yuan, Z. Q., Li, B. H., Bai, X. J., Lin, F., Shi, S., Ye, J., Wang, X. G., & Hao, Z. Q. (2010). Composition and seasonal dynamics of litter falls in a broad-leaved Korean pine mixed forest in Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology, 21, 2171–2178.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Tamil Nadu Forest Department for granting permission to conduct this study. KS is grateful to the University Grants Commission for granting fellowship during the study period. Finally, we thank the anonymous reviewers for their valuable comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subashree, K., Dar, J.A. & Sundarapandian, S. Variation in soil organic carbon stock with forest type in tropical forests of Kanyakumari Wildlife Sanctuary, Western Ghats, India. Environ Monit Assess 191, 690 (2019). https://doi.org/10.1007/s10661-019-7881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7881-6

Keywords

Navigation