Skip to main content

Advertisement

Log in

Valuation methodology of laminar erosion potential using fuzzy inference systems in a Brazilian savanna

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study presents an approach on the evaluation of potential laminar erosion in the Ribeirão Sucuri Grande watershed. It is located in the northeast of the state of Goiás, Brazil, a conservation area under strong anthropogenic pressure. A Mamdani fuzzy inference system was designed using linguistic variables, pertinence functions, and a set of rules associated to a traditional laminar erosion prediction model through the environmental conditioners slope, erodibility, and degree of soil protection. The laminar erosion prediction model associated with fuzzy logic is a qualitative evaluation of erosive potential capable of being spatialized with a greater level of detail, increasing the traditional classification by two levels. The processing of environmental and soil conditioning factors using the fuzzy logic resulted in values between 2.5 and 9.1, which places the basin at a low to very high laminar erosion potential. The results indicate areas that demand a greater attention regarding soil management; 56.89% of the area has a medium to high laminar erosion and high to very high erosion (6.99%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ab’Saber, A. N. (1983). O domínio dos cerrados: introdução ao conhecimento. Revista do Serviço Publico, 111, 41–55.

  • Ab’Saber, A. N. (2003). Os domínios de natureza do Brasil: Potencialidades. São Paulo: Ateliê Editorial.

    Google Scholar 

  • Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences, 38, 23–34. https://doi.org/10.1016/j.cageo.2011.04.012.

    Article  Google Scholar 

  • Anomaa, G. M. M. M., Ranjith, P. U., Stephen, H. A., Claire, B., & Allen, T. (2014). Use of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri. Journal of Hydrology., 517, 1008–1018. https://doi.org/10.1016/j.jhydrol.2014.06.023.

    Article  Google Scholar 

  • Bagarello, V., Stefano, C. D., Ferro, V., Kinnell, P. I. A., Pampalone, V., Porto, P., & Todisco, F. (2011). Predicting soil loss on moderate slopes using an empirical model for sediment concentration. Journal of Hydrology., 400, 267–273. https://doi.org/10.1016/j.jhydrol.2011.01.029.

    Article  Google Scholar 

  • Barros, L. C., Bassanezi, R. C., Lodwick, W. A (2017). A first course in fuzzy logic, fuzzy dynamical systems, and biomathematics. Theory and Application. Ed. Springer. https://doi.org/10.1007/978-3-662-53324-6.

    Book  Google Scholar 

  • Boll, J., Brooks, E. S., Crabtree, B., Dun, S., & Tammo, S. S. (2015). Variable source area hydrology modeling with the water erosion prediction project model. Journal of the American Water Resources Association., 51, 330–342. https://doi.org/10.1111/1752-1688.12294.

    Article  Google Scholar 

  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. Soil., 1, 117–129. https://doi.org/10.5194/soil-1-117-2015.

    Article  Google Scholar 

  • Brooks, E. S., Dobre, M., Elliot, Wu, J. Q., & Boll, J. (2016). Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin. Journal ff Hydrology, 533, 389–402. https://doi.org/10.1016/j.jhydrol.2015.12.004.

    Article  Google Scholar 

  • Chidthong, Y., Tanaka, H., & Supharatid, S. (2009). Developing ahybrid multi-model for peak floodforecasting. Hydrology Process, 23(1), 1725–1738.

    Article  Google Scholar 

  • Cohen, S., Svoray, T., Laronne, J. B., & Alexandrov, Y. (2008). Fuzzy-based dynamic soil erosion model (FuDSEM): modelling approach and preliminary evaluation. Journal of Hydrology, 356, 185–198. https://doi.org/10.1016/j.jhydrol.2008.04.010.

    Article  Google Scholar 

  • Crepani, E., Medeiros, J. S., Hernandez Filho, P., Florenzano, T. G., Duarte, C., & Barbosa, C. F. (2001). Sensoriamento Remoto e Geoprocessamento Aplicados ao Zoneamento Ecológico-Econômico e ao Ordenamento Territorial. INPE: São José dos Campos-São Paulo.

    Google Scholar 

  • De Biase, M. A. (1993). Carta clinográfica: os métodos de representação e sua confecção. Revista de Geografia, 6(1), 45–60.

    Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária – Embrapa. (2006). Centro Nacional de Pesquisa do Solo. Sistema brasileiro de classificação de solos. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • Esri. (2016). Environmental Systems Research Institute. ArcGis Desktop v. 10.5 – Surface Slopes (3D Analyst). Redlands, CA.

  • Ferreira, M. E. (2009). Modelagem da dinâmica da paisagem do Cerrado. 116 p. tese (doutorado em Ciências Ambientais) – Programa Multidisciplinar de Doutorado em Ciências Ambientais, Universidade Federal de Goiás, Goiânia.

  • Gayen, A., & Saha, S. (2017). Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India. Modeling Earth Systems and Environment, 3, 1123–1139. https://doi.org/10.1007/s40808-017-0362-4.

    Article  Google Scholar 

  • Gomes, L., Simões, S. J., Nora, E. L. D., Sousa-Neto, E. R., Forti, M. C., & Ometto, J. P. H. B. (2019). Agricultural expansion in the Brazilian. Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivit, Land. https://doi.org/10.3390/land8010012.

    Book  Google Scholar 

  • Güçlü, Y. S., & Şen, Z. (2016). Hydrograph estimation with fuzzy chain model. Journal of Hydrology, 538, 587–597. https://doi.org/10.1016/j.jhydrol.2016.04.057.

    Article  Google Scholar 

  • Heydari, M., Honarbakhsh, A., Pajoohesh, M., & Zangiabadi, M. (2018). Land use optimization using the fuzzy mathematical-spatial approach: a case study of chelgerd. Journal of Environmental Engineering and Landscape Management, 26, 75–87. https://doi.org/10.3846/16486897.2017.1350688.

    Article  Google Scholar 

  • Hu, Y., Wang, Z., Wen, J., & Li, Y. (2016). Stochastic fuzzy environmental risk characterization of uncertainty and variability in risk assessments: a case study of polycyclic aromatic hydrocarbons in soil at a petroleum-contaminated site in China. Journal of Hazardous Materials, 316, 143–150. https://doi.org/10.1016/j.jhazmat.2016.05.033.

    Article  CAS  Google Scholar 

  • Imbrenda, V. D’Emilio, M., Lanfredi, M., Simoniello, T., Ragosta, M., Macchiato, M. (2013). Integrated indicators for the estimation of vulnerability to land degradation. In. Soil processes and current trends in quality assessment. InTech. doi https://doi.org/10.5772/52870.

    Google Scholar 

  • IPT Instituto de Pesquisas Tecnológicas do Estado de São Paulo. (1990). Orientações para o Combate à Erosão no Estado de São Paulo, Bacia do Pardo Grande. São Paulo, 3 v. (IPT. Relatório, 28: 184).

  • Jacquin, A. P., & Shamseldin, A. Y. (2006). Development of rainfall–runoff models using Takagi–Sugeno fuzzy inference systems. Journal of Hydrology, 329, 154–173. https://doi.org/10.1016/j.jhydrol.2006.02.009.

    Article  Google Scholar 

  • Jacquin, A. P., & Shamseldin, A. Y. (2009). Review of the application of fuzzy inference systems in river flow forecasting. Journal of Hydroinformatics, 11, 202–210. https://doi.org/10.2166/hydro.2009.038.

    Article  Google Scholar 

  • Jamil, M., Ahmed, R., & Saijad, H. (2018). Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process. GeoJournal, 83, 595–611. https://doi.org/10.1007/s10708-017-9788-5.

    Article  Google Scholar 

  • Jepson, W. (2005). A disappearing biome? Reconsidering land-cover change in the Brazilian savanna. The Geographical Journal. https://doi.org/10.1016/j.jhydrol.2010.01.024.

    Article  Google Scholar 

  • Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E. C., & Aitkenhead-Peterson, J. (2016). Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation & Development, 28, 128–141. https://doi.org/10.1002/ldr.2541.

    Article  Google Scholar 

  • Kinnell, P. I. A. (2010). Event soil loss, runoff and the universal soil loss equation family of models: a review. Journal of Hydrology, 385, 384–397. https://doi.org/10.1016/j.jhydrol.2010.01.024.

    Article  Google Scholar 

  • Kinnell, P. I. A. (2017). A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas. Science of The Total Environment, 596-597, 32–42. https://doi.org/10.1016/j.scitotenv.2017.04.046.

    Article  CAS  Google Scholar 

  • Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology., 19, 707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x.

    Article  Google Scholar 

  • Korytny, L. M. (2017). The basin concept: from hydrology to nature management. Geography And Natural Resources. https://doi.org/10.1134/S1875372817020019.

    Article  Google Scholar 

  • Kuhn, N. J. (2007). Erodibility of soil and organic matter: independence of organic matter resistance to interrill erosion. Earth Surface Processes and Landforms, 32, 794–802. https://doi.org/10.1002/esp.1486.

    Article  Google Scholar 

  • Lal, R. (1988) Erodibility and erosivity. In: Lal R. (Ed.), Soil erosion research methods (pp. 141–160). Ankeny, Soil and Water Conservation Society.

  • Lepsch, I. F. (2002). Formação e Conservação dos Solos. Oficina de Textos: São Paulo.

    Google Scholar 

  • Liu, D., Cao, C., Dubovyk, O., Tian, R., Chen, W., Zhuang, Q., Zhao, Y., & Menz, G. (2017). Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China. Ecological Indicators, 73, 612–625. https://doi.org/10.1016/j.ecolind.2016.08.031.

    Article  Google Scholar 

  • Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442-443, 23–35. https://doi.org/10.1016/j.jhydrol.2012.03.031.

    Article  Google Scholar 

  • Lourenço, R. W., Silva, D. C. C., Martins, A. C. G., Sales, J. C. A., Roveda, S. R. M. M., & Roveda, J. A. F. (2015). Use of fuzzy systems in the elaboration of an anthropic pressure indicator to evaluate the remaining forest fragments. Environmental Earth Sciences, 74, 2481–2488. https://doi.org/10.1007/s12665-015-4253-6.

    Article  Google Scholar 

  • Mallick, J., Singh, R. K., Alawadh, M. A., Khan, R. A., Islam, S., & Qureshi, M. S. (2018). GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7451-1.

  • Maranhao, D. D. C., Aguado, O. I. O., Pereira, M. G., Araujo, A. P., Castro, S. S., & Ferreira Junior, L. G. (2017). Analysis of potential for linear erosion in the Cerrado Biome using morphopedology. Revista Brasileira Ciência do Solo. https://doi.org/10.1590/18069657rbcs20160427.

  • MetternichtS, G., & Gonzalez, S. (2005). FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environmental Modelling & Software, 20, 715–728. https://doi.org/10.1016/j.envsoft.2004.03.015.

    Article  Google Scholar 

  • Mitra, B., Scoot, H. D. A., Dixon, J. C., & McKimmey, J. M. (1998). Applications of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma, 86, 183–209. https://doi.org/10.1016/S0016-7061(98)00050-0.

    Article  Google Scholar 

  • Motta, P. E. F., Curi, N., & Franzmeier, D. P. (2002). Relation of soils and geomorphic surfaces in the Brazilian Cerrado. In P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil: ecology and natural history of a neotropical savanna. New York: Columbia University Press.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, L. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(1), 853–858.

    Article  CAS  Google Scholar 

  • Nunes, J. P., Seixass, J., Keizer, J. J., & Ferreira, A. J. D. (2009). Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part I: model parameterization and evaluation. Hydrological Processes., 23, 1202–1211. https://doi.org/10.1002/hyp.7247.

    Article  Google Scholar 

  • Nunes, M. C. M., Neves, S. M. A. S., Neves, R. J., Kreitlow, J. P., & Chimellho, A. M. (2013). Susceptibility to water erosion of soil from the municipality Salto do Céu, SW Mato Grosso State, Brazil - Brasil. Geografia, 38(1), 191–206.

    Google Scholar 

  • Oliveira, A. H., Da Silva, M. A., Silva, M. L. N., Curi, N., Klinke Neto, G., Diego Freitas, D. A. F. (2013). Development of topographic factor modeling for application in soil erosion models. In Soil processes and current trends in quality assessment. InTech. doi https://doi.org/10.5772/54439.

    Google Scholar 

  • Özelkan, E. C., & Duckstein, L. (2001). Fuzzy conceptual rainfall – runoff model. Journal of Hydrology, 253(1), 41–68.

    Article  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs soil erosion and conservation benefits. Science, 267, 1117–1123. https://doi.org/10.1126/science.267.5201.1117.

    Article  CAS  Google Scholar 

  • Reatto, A., Correia, J. R., & Spera, T. (1998). Solos do bioma Cerrado: aspectos pedológicos. In S. M. Sano & S. P. C. Almeida (Eds.), ambiente e flora. Planaltina: Embrapa-CPAC.

    Google Scholar 

  • Ross, J. L. S. (1993). Análise empírica da fragilidade dos ambientes naturais e antropizados. São Paulo: Universidade São Paulo.

    Google Scholar 

  • Salomão, F. X. T. (2010). Controle e Prevenção dos Processos Erosivos. In A. J. T. Guerra, A. S. Silva, & R. G. M. Botelho (Eds.), Erosão e Conservação dos Solos: Conceitos, Temas e Aplicações. Rio de Janeiro: Bertrand Brasil.

    Google Scholar 

  • Samsom, S. A., Auanlade, A., Alabi, O., Alaga, A. T., Oloko-Oba, M. O., Ogunyemi, S. A., & Badru, R. A. (2017). Soil erosion vulnerability mapping and implication on vegetation in parts of Oshun River Basin, Nigeria. International Journal of Scientific Research in Science, Engineering and Technology, 3(1), 82–91.

    Google Scholar 

  • Shidlovskaya, A., Briaud, J., Cheid, M., Keshavarz, M. (2016) Erodibility of soil above the groundwater level: some test results. E3s Web of Conferences. https://doi.org/10.1051/e3sconf/20160910011.

    Article  Google Scholar 

  • SIEG. Sistema Estadual de Geoinformação do Estado de Goiás (2016) Bases Cartográficas. Publishing PhysicsWeb. http://www.sieg.go.gov.br. Accessed 26 jul 2016.

  • Silva, L. F., Cassol, E. A., Murliki, J. D., Silva, B. P., Pandolfo, M., & L. (2016). Susceptibility to rill erosion of a 12-year-old soil reconstructed after coal mining. International Journal of River Basin Management, 14, 379–384. https://doi.org/10.1080/15715124.2016.1193507.

    Article  Google Scholar 

  • Spörl, C., & Ross, J. L. S. (2004). Análise comparativa da fragilidade ambiental com aplicação de três modelos. GEOUSP - Espaço e Tempo. https://doi.org/10.11606/issn.2179-0892.geousp.2004.123868.

  • Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1), 7–31.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions Systems, Man and Cybernetics, SMC-15, 116–132. https://doi.org/10.1109/TSMC.1985.6313399.

    Article  Google Scholar 

  • The MathWorks (2014) Fuzzy Logic Toolbox™ User’s Guide. ©Copyright 1995–2014 by The MathWorks Inc.

  • Wang, Y., Zhang, J. H., Zhang, Z. H., & Jia, L. Z. (2016). Impact of tillage erosion on water erosion in a hilly landscape. Science of The Total Environment, 551-552, 522–532. https://doi.org/10.1016/j.scitotenv.2016.02.045.

    Article  CAS  Google Scholar 

  • Yoshimura, K., Onda, Y., & Kato, H. (2015). Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. Journal of Environmental Radioactivity, 139, 362–369. https://doi.org/10.1016/j.jenvrad.2014.07.019.

    Article  CAS  Google Scholar 

  • Zadeh, L. A. (1965). Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 23, 421–427. https://doi.org/10.1016/0022-247x(68)90078-4.

    Article  Google Scholar 

Download references

Acknowledgments

To the Fundação de Apoio ao Instituto de Pesquisas Tecnológicas (FIPT) for the scholarship during the study. To the Instituto de Pesquisas Tecnológicas of São Paulo (IPT) for the participation of the second and third authors in the New Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jomil Costa Abreu Sales.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, J.C., Sales, J.C.A., do Nascimento Lopes, E.R. et al. Valuation methodology of laminar erosion potential using fuzzy inference systems in a Brazilian savanna. Environ Monit Assess 191, 624 (2019). https://doi.org/10.1007/s10661-019-7789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7789-1

Keywords

Navigation