Skip to main content

Advertisement

Log in

The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Benefiting from current unmanned air vehicle (UAV) and remote sensing techniques, the present study aims to estimate tree count (TC), tree height (TH), and tree crown cover area (TCCA) in a young Calabrian pine stand via canopy height model (CHM). Overlay images obtained using Quadcopter were used to generate two spatial three-dimensional (3D) cloud points in two different qualities. Point clouds were processed using R program in order to produce tree data using CHM. The sensitivity of CHM-based tree data was revealed using 318 tree measurements in 32 different sampling units. Estimation and measurement values were classified based on their structure from motion (SfM) quality and cover classes, and the statistical relationships among them were analyzed. Without any classification, R2 was calculated for TC, THMean, and TCCATotal estimations and field measurements. R2 values were calculated as 0.865, 0.778, and 0.869, respectively, for SfMHighest CHM, while they were calculated as 0.863, 0.736, and 0.843, respectively, for SfMMedium CHM. In addition, sensitivity and performance ranking in different groups were determined based on root mean square error (RMSE) and mean absolute percentage error (MAPE) values. A significant difference was observed among groups in terms of quality and cover for TH, while no significant differences were observed for TCCA. Therefore, it is possible to estimate the properties of SfM CHM–based young coniferous stand. It was understood that tree density, crown shape, and branching influenced the accuracy of the present study. The developed UAV (Drone)-SfM is a promising technique for further small-scale forestry studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

The author thanks Seçkin Şireli (Forest Engineer) for his help in field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sercan Gülci.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülci, S. The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands. Environ Monit Assess 191, 495 (2019). https://doi.org/10.1007/s10661-019-7628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7628-4

Keywords

Navigation