Skip to main content
Log in

Heavy metal accumulation in surface sediments of the Ganga River (India): speciation, fractionation, toxicity, and risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We investigated the distribution of different fractions of eight heavy metals (Zn, Cr, Cu, Pb, Cd, Ni, Fe, and Mn) in the bed sediment of the Ganga River. The study was conducted during summer low flow (March to June 2017) considering a 285-km middle stretch of the Ganga River between the Allahabad upstream and the Varanasi downstream. To assess the metal levels from a toxicological perspective, we tested the relationships between metals and sediment microbial/extracellular enzyme activities. Most of the metals showed a large fraction in residual form. However, Zn, Pb, and Cd showed about 20–30% share in the exchangeable form. The total metal concentration poorly reflected the toxicity but the exchangeable fractions did show strong negative correlations (r = − 0.83 to − 0.63; p < 0.01) with microbial/enzyme activities. Also, the nutrients and organic carbon showed strong positive correlations (r = 0.62 to 0.89; p < 0.001) with microbial/enzyme activity. The phosphate showed a strong negative correlation (r = −0.82; p < 0.001) with alkaline phosphatase. The principal component analysis (PCA) and the indices such as contamination factor (CF), enrichment factor (EF), pollution load index (PLI), geoaccumulation index (Igeo), and risk assessment code (RAC) revealed moderate to severe contamination with strong anthropogenic influence. As per the United States Environmental Protection Agency, the metal concentrations at many locations were in the highly toxic range. The study has relevance from a toxicological perspective and for the management of the Ganga River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Ghani, N. T., & Elchaghaby, G. A. (2007). Influence of operating conditions on the removal of Cu, Zn, Cd, and Pb ions from wastewater by adsorption. International journal of Environmental Science and Technology, 4, 451–456.

    Article  CAS  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz River sediments. Water Research, 37, 813–822.

    Article  CAS  Google Scholar 

  • Anderson, T. H. (2003). Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment, 98, 285–293.

    Article  Google Scholar 

  • Antibachi, D., Kelepertzis, E., & Kelepertsis, A. (2012). Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination: An International Journal, 21, 434–450.

    Article  CAS  Google Scholar 

  • Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Tripathy, S., Chakrabarti, K., Chakraborty, A., & Banik, P. (2008). Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere, 72, 543–550.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Olmos, M. A. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES Journal of Marine Science, 65, 1407–1413.

    Article  CAS  Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Central Pollution Control Board. (2013). Pollution assessment: River Ganga. Delhi: Ministry of Environment and Forests, Govt. of India, Parivesh Bhawan.

    Google Scholar 

  • Chander, K., & Brookes, P. C. (1991). Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam UK soil. Soil Biology and Biochemistry, 23, 927–932.

    Article  Google Scholar 

  • Dilly, O., & Munch, J. C. (1996). Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnusglutinosa (L.) Gaertn.) forest. Soil Biology and Biochemistry, 28, 1073–1081.

    Article  CAS  Google Scholar 

  • Driessen, P., Deckers, J., Spaargaren, O., & Nachtergaele, F. (2000). Lecture notes on the major soils of the world (No. 94). Food and Agriculture Organization (FAO).

  • Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9, 167–172.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20, 601–606.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Ahmadi, F., & Shokrollahi, A. (2007). Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. Journal of Hazardous Materials, 142, 272–278.

    Article  CAS  Google Scholar 

  • Ghosh, A. K., Bhattacharyya, P., & Pal, R. (2004). Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environment International, 30, 491–499.

    Article  CAS  Google Scholar 

  • Gibbons, S. M., Jones, E., Bearquiver, A., Blackwolf, F., Roundstone, W., Scott, N., Hooker, J., Madsen, R., Coleman, M. L., & Gilbert, J. A. (2014). Human and environmental impacts on river sediment microbial communities. Plos One, 9, 97435.

    Article  Google Scholar 

  • Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Gowd, S. S., Reddy, M. R., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Article  CAS  Google Scholar 

  • Hargreaves, P. R., Brookes, P. C., Ross, G. J. S., & Poulton, P. R. (2003). Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biology and Biochemistry, 35, 401–407.

    Article  CAS  Google Scholar 

  • Hill, B. H., Elonen, C. M., Jicha, T. M., Cotter, A. M., Trebitz, A. S., & Danz, N. P. (2006). Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwater Biology, 51, 1670–1683.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291.

    Article  CAS  Google Scholar 

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Sharma, M. K. (2001). Distribution of trace metals in the Hindon River system, India. Journal of Hydrology, 253, 81–90.

    Article  CAS  Google Scholar 

  • Jaiswal, D., & Pandey, J. (2018). Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India). Ecotoxicological and Environmental Safety, 150, 104–115.

    Article  CAS  Google Scholar 

  • Jaiswal, D., & Pandey, J. (2019). Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecological Indicators, 99, 349–364.

    Article  CAS  Google Scholar 

  • Jha, P. K., Subramanian, V., Sitasawad, R., & Van Grieken, R. (1990). Heavy metals in sediments of the Yamuna River (a tributary of the Ganges), India. Science of the Total Environment, 95, 7–27.

    Article  CAS  Google Scholar 

  • Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30, 485–492.

    Article  CAS  Google Scholar 

  • Li, Q., Wu, Z., Chu, B., Zhang, N., Cai, S., & Fang, J. (2007). Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 149, 158–164.

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Liu, S. H., Zeng, G. M., Niu, Q. Y., Liu, Y., Zhou, L., Jiang, L. H., Tan, X. F., Xu, P., Zhang, C., & Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33.

    Article  CAS  Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechuła, D., & Kwapuliński, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution, 93, 347–365.

    CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Medici, L., Bellanova, J., Belviso, C., Cavalcante, F., Lettino, A., Ragone, P. P., & Fiore, S. (2011). Trace metals speciation in sediments of the Basento River (Italy). Applied Clay Science, 53, 414–442.

    Article  CAS  Google Scholar 

  • Miller, C. V., Foster, G. D., & Majedi, B. F. (2003). Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States. Applied Geochemistry, 18, 483–501.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192, 402–410.

    CAS  Google Scholar 

  • Pandey, J., & Yadav, A. (2017). Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecological Indicators, 82, 327–343.

    Article  CAS  Google Scholar 

  • Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15, 278–286.

    Article  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M. L., & Orio, A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Metals in the. Environment, 2, 454–456.

    CAS  Google Scholar 

  • Qiu, H. (2010). Studies on the potential ecological risk and homology correlation of heavy metal in the surface soil. Journal of Agricultural Science, 2, 194–201.

    Article  Google Scholar 

  • Rainbow, P. S. (2007). Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International, 33, 576–582.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Luck, D., Yli-Halla, M., Muntau, H., & Quevauviller, P. (2001). The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following sequential extraction procedure-BCR 701. Bruxelles: BCR Information European Commission. BCR Information. Reference Materials Report EUR 19775.

  • Remor, M. B., Sampaio, S. C., Rijk, S. D., Boas, A. V., Gotardo, J. T., Pinto, E. T., & Schardong, F. A. (2018). Sediment geochemistry of the urban Lake Paulo Gorski. International Journal of Sediment Research, 33, 406–414. https://doi.org/10.1016/j.ijsrc.2018.04.009.

    Article  Google Scholar 

  • Sakan, S. M., Đorđević, D. S., Manojlović, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.

    Article  CAS  Google Scholar 

  • Schnürer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43, 1256–1261.

    Google Scholar 

  • Selvaraj, K., Mohan, V. R., & Szefer, P. (2004). Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin, 49, 174–185.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80, 1–17.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., & Foreman, C. M. (2001). Activity profiles of bacterioplankton in a eutrophic river. Freshwater Biology, 46, 1239–1249.

    Article  Google Scholar 

  • Sinsabaugh, R. L., & Linkins, A. E. (1990). Enzymic and chemical analysis of particulate organic matter from a boreal river. Freshwater Biology, 23, 301–309.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Hill, B. H., & Shah, J. J. F. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795–798.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a cases study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2010). BCR®-701: A review of 10-years of sequential extraction analyses. Analytica Chimica Acta, 680, 10–20.

    Article  CAS  Google Scholar 

  • Sysalova, J., & Szakova, J. (2006). Mobility assessment and validation of toxic elements in tunnel dust samples—Subway and road using sequential chemical extraction and ICP-OES/GF AAS measurements. Environmental Research, 101, 287–293.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  CAS  Google Scholar 

  • Tate, K. R., Ross, D. J., & Feltham, C. W. (1988). A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biology and Biochemistry, 20, 329–335.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländermeeresuntersuchungen, 33, 566–575.

    Google Scholar 

  • Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

    Article  CAS  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  • Voghel, A. I. (1971). A Text Book of Quantitative Inorganic Analysis (IV Edition) The Eng. Lang. Book Soc. and Longman.

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., & Davies, C. R. P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  Google Scholar 

  • Wardle, D. A., & Ghani, A. (1995). Why is the strength of relationships between pairs of method for estimating soil microbial biomass often so variable? Soil Biology and Biochemistry, 27, 821–828.

    Article  CAS  Google Scholar 

  • Wardle, D. A., Yeates, G. W., Watson, R. N., & Nicholson, K. S. (1993). Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus cropping systems. Soil Biology and Biochemistry, 25, 857–868.

    Article  Google Scholar 

  • Yadav, A., & Pandey, J. (2017). Water quality interaction with alkaline phosphatase in the Ganga River: implications for river health. Bulletin of Environmental Contamination and Toxicology, 99, 75–82.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, F., Zhang, L., Liu, J., Wu, S., & Kang, M. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64, 1947–1955.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, 2575–2585.

    Article  CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Head of the Department of Botany and the Coordinators of CAS and DST-FIST, Banaras Hindu University, for providing facilities.

Funding

This research was funded by the National Academy of Science, India (Grant No. NAS/2012/2/2015-16), as a fellowship to KV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Pandey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KavitaVerma, Pandey, J. Heavy metal accumulation in surface sediments of the Ganga River (India): speciation, fractionation, toxicity, and risk assessment. Environ Monit Assess 191, 414 (2019). https://doi.org/10.1007/s10661-019-7552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7552-7

Keywords

Navigation