Skip to main content

Advertisement

Log in

Conserving terrestrial linkages that connect natural landscapes of the Korean Peninsula

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human-induced land degradation fragments natural ecosystems, hinders ecological processes, and threatens biodiversity. Maintaining or restoring ecological flows across landscapes through landscape linkages may provide a solution. Here, we identify a peninsula-wide ecological connectivity network for the Korean Peninsula using two linkage mapping models. We found three major north-south axes of connectivity traversing the Demilitarized Zone (DMZ), which emerged as an important east-west linkage. Only 7% of the highest-ranked connections are currently secured by protected areas. We found 120 linkages in North and South Korea that are intersected by road networks consisting of motorways and trunk roads under both models. These locations should be the focus of immediate attention for conservation planners, as well as 274 and 1130 additional road-impacted linkages under one model or the other. The results can be used for policy support, and potentially as a basis for the two countries to engage in discussions about ecosystem health and climate change adaptation. The approach presented here can also be efficiently used to assess and map natural landscape linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bae, J. S., Joo, R. W., & Kim, Y.-S. (2012). Forest transition in South Korea: reality, path and drivers. Land Use Policy, 29(1), 198–207.

    Article  Google Scholar 

  • Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., & Turlure, C. (2013). Individual dispersal, landscape connectivity and ecological networks. Biological Reviews, 88(2), 310–326. https://doi.org/10.1111/brv.12000.

    Article  Google Scholar 

  • Barabás, G., Michalska-Smith, M. J., & Allesina, S. (2017). Self-regulation and the stability of large ecological networks. Nature Ecology & Evolution, 1(12), 1870–1875. https://doi.org/10.1038/s41559-017-0357-6.

    Article  Google Scholar 

  • Bontemps, S., Defourny, P., van Bogaert, E., Arino, O., Kalogirou, V., & Perez, J. R. (2011). GlobCover 2009, products description and validation report. Louvain-la-Neuve: European Space Agency, Frascati, Italy, and Universite’ Catholique de Louvain.

    Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28, 466–484.

    Article  Google Scholar 

  • Brooks, C. P. (2003). A scalar analysis of landscape connectivity. Oikos, 102(2), 433–439.

    Article  Google Scholar 

  • Broxton, P. D., Zeng, X., Sulla-Menashe, D., & Troch, P. A. (2014). A global land cover climatology using MODIS data. Journal of Applied Meteorology and Climatology, 53(6), 1593–1605. https://doi.org/10.1175/jamc-d-13-0270.1.

    Article  Google Scholar 

  • Carroll, C., McRae, B. H., & Brookes, A. (2012). Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26(1), 78–87. https://doi.org/10.1111/j.1523-1739.2011.01753.x.

    Article  Google Scholar 

  • Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, Accepted Author Manuscript. https://doi.org/10.1111/gcb.14373.

  • Choe, H., Thorne, J. H., Hijmans, R., Kim, J., Kwon, H., & Seo, C. (2017). Meta-corridor solutions for climate-vulnerable plant species groups in South Korea. Journal of Applied Ecology, 54(6), 1742–1754. https://doi.org/10.1111/1365-2664.12865.

    Article  Google Scholar 

  • Choi, Y. K. (2004). Baekdudaegan, the central axis of the Korean peninsular: the path toward management strategies regarding to its concepts. In S.-K. Hong, J. A. Lee, B.-S. Ihm, A. Farina, Y. Son, E.-S. Kim, et al. (Eds.), Ecological issues in a changing world: status, response and strategy (pp. 355–384). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Crooks, K. R., & Sanjayan, M. A. (2006). Connectivity conservation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • DiMiceli, C. M., Carroll, M. L., Sohlberg, R. A., Huang, C., Hansen, M. C., & Townshend, J. R. G. (2011). Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. College Park: University of Maryland. http://www.landcover.org/data/vcf/. Accessed 18 July 2017.

  • ESRI. (2012). ArcGIS, Version 10.1. Redlands, California, USA.

  • ESRI. (2019). ArcGIS - World Imagery Map Service. Retrieved from https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9. Accessed 28 Apr 2019.

  • Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419.

    Article  Google Scholar 

  • Foley, J., DeFries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.

    Article  CAS  Google Scholar 

  • Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231.

    Article  Google Scholar 

  • Forman, R. T. T., Sperling, D., Bissonette, J. A., Clevenger, A. P., Cutshall, C. D., Dale, V. H., et al. (2003). Road ecology: science and solutions. Covelo: Island Press.

    Google Scholar 

  • Galpern, P., Manseau, M., & Fall, A. (2011). Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biological Conservation, 144(1), 44–55. https://doi.org/10.1016/j.biocon.2010.09.002.

    Article  Google Scholar 

  • Girardet, X., Conruyt-Rogeon, G., & Foltête, J.-C. (2015). Does regional landscape connectivity influence the location of roe deer roadkill hotspots? European Journal of Wildlife Research, 61, 731–742.

    Article  Google Scholar 

  • Gonzalez, J. R., Barrio, G. d., & Duguy, B. (2008). Assessing functional landscape connectivity for disturbance propagation on regional scales—a cost-surface model approach applied to surface fire spread. Ecological Modelling, 211(1), 121–141. https://doi.org/10.1016/j.ecolmodel.2007.08.028.

    Article  Google Scholar 

  • Harrison, S., & Bruna, E. (1999). Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22(3), 225–232.

    Article  Google Scholar 

  • Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation, 142, 14–32.

    Article  Google Scholar 

  • IUCN and UNEP-WCMC. (2017). The World Database on Protected Areas (WDPA) [on-line], [November 2017 of the version downloaded]. Cambridge: UNEP-WCMC. Available at: www.protectedplanet.net. Accessed 16 Nov 2017.

  • Kang, S., & Choi, W. (2014). Forest cover changes in North Korea since the 1980s. Regional Environmental Change, 14(1), 347–354. https://doi.org/10.1007/s10113-013-0497-4.

    Article  Google Scholar 

  • Kang, W., Minor, E. S., Lee, D., & Park, C.-R. (2016a). Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecologica, 71, 31–38. https://doi.org/10.1016/j.actao.2016.01.005.

    Article  Google Scholar 

  • Kang, W., Minor, E. S., Woo, D., Lee, D., & Park, C.-R. (2016b). Forest mammal roadkills as related to habitat connectivity in protected areas. Biodiversity and Conservation, 25(13), 2673–2686. https://doi.org/10.1007/s10531-016-1194-7.

    Article  Google Scholar 

  • Keeley, A. T. H., Ackerly, D. D., Cameron, D. R., Heller, N. E., Huber, P. R., Schloss, C. A., Thorne, J. H., & Merenlender, A. M. (2018). New concepts, models, and assessments of climate-wise connectivity. Environmental Research Letters, 13(7), 073002.

    Article  Google Scholar 

  • Kim, K.-G., & Cho, D.-G. (2005). Status and ecological resource value of the Republic of Korea’s De-militarized Zone. Landscape and Ecological Engineering, 1(1), 3–15.

    Article  Google Scholar 

  • Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Pöyry, J., Raatikainen, K. M., Sang, A., Stefanescu, C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5), 597–605.

    Article  Google Scholar 

  • Krosby, M., Tewksbury, J., Haddad, N. M., & Hoekstra, J. (2010). Ecological connectivity for a changing climate. Conservation Biology, 24(6), 1686–1689. https://doi.org/10.1111/j.1523-1739.2010.01585.x.

    Article  Google Scholar 

  • Lee, S.-D., & Miller-Rushing, A. J. (2014). Degradation, urbanization, and restoration: a review of the challenges and future of conservation on the Korean Peninsula. Biological Conservation, 176, 262–276. https://doi.org/10.1016/j.biocon.2014.05.010.

    Article  Google Scholar 

  • Marrotte, R. R., & Bowman, J. (2017). The relationship between least-cost and resistance distance. PLoS One, 12(3), e0174212. https://doi.org/10.1371/journal.pone.0174212.

    Article  CAS  Google Scholar 

  • Marulli, J., & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2–4), 243–262. https://doi.org/10.1016/j.landurbplan.2004.03.007.

    Article  Google Scholar 

  • McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology, 15(2), 320–331.

    Article  Google Scholar 

  • McGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24(3), 433–450.

    Article  Google Scholar 

  • McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1.

    Article  Google Scholar 

  • Ministry of Environment (ME). (2014). Republic of Korea’s fifth national report to the United Nations convention on biological diversity. Available online: https://www.cbd.int/doc/world/kr/kr-nr-05-en.pdf. Accessed 26 Nov 2017.

  • Moilanen, A. (2011). On the limitations of graph theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 48(6), 1543–1547.

    Article  Google Scholar 

  • Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27, 39–54.

    Article  Google Scholar 

  • Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285–297.

    Article  Google Scholar 

  • OpenStreetMap contributors. (2015). OpenStreetMap South and North Korea. http://download.geofabrik.de. Accessed 15 Nov 2017.

  • Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114. https://doi.org/10.1016/j.landurbplan.2010.09.001.

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24(2), 253–266.

    Article  Google Scholar 

  • Rho, P., Choung, H.-L., & Bae, S.-Y. (2005). GIS-based wildlife habitat management strategies in Korea (p. 73). Seoul: Korea Environment Institute.

    Google Scholar 

  • Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild. Bioscience, 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2.

  • Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5(1), 18–32.

    Article  Google Scholar 

  • Seo, C., Thorne, J. H., Choi, T., Kwon, H., & Park, C.-H. (2015). Disentangling roadkill: the influence of landscape and season on cumulative vertebrate mortality in South Korea. Landscape and Ecological Engineering, 11(1), 87–99. https://doi.org/10.1007/s11355-013-0239-2.

    Article  Google Scholar 

  • Spencer, W., Beier, P., Penrod, K., Winters, K., Paulman, C., Rustigian-Romsos, H., et al. (2010). California essential habitat connectivity project: a strategy for conserving a connected California. Prepared for California Department of Transportation, California Department of Fish and Game, and Federal Highways Administration.

  • Statistics Korea (The Korean Government Official Statistics Website). (2017). Available online: http://kostat.go.kr/portal/eng/index.action. Accessed on 28 Apr 2017.

  • Stephens, S. E., Koons, D. N., Rotella, J. J., & Willey, D. W. (2004). Effects of habitat fragmentation on avian nesting success: a review of the evidence at multiple spatial scales. Biological Conservation, 115(1), 101–110.

    Article  Google Scholar 

  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571–573.

    Article  Google Scholar 

  • Teng, M., Wu, C., Zhou, Z., Lord, E., & Zheng, Z. (2011). Multipurpose greenway planning for changing cities: a framework integrating priorities and a least-cost path model. Landscape and Urban Planning, 103(1), 1–14. https://doi.org/10.1016/j.landurbplan.2011.05.007.

    Article  Google Scholar 

  • Theobald, D. M., Crooks, K. R., & Norman, J. B. (2011). Assessing effects of land use on landscape connectivity: loss and fragmentation of western U.S. forests. Ecological Applications, 21(7), 2445–2458. https://doi.org/10.1890/10-1701.1.

    Article  Google Scholar 

  • Theobald, D. M., Reed, S. E., Fields, K., & Soulé, M. (2012). Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conservation Letters, 5(2), 123–133. https://doi.org/10.1111/j.1755-263X.2011.00218.x.

    Article  Google Scholar 

  • Thorne, J. H., Cameron, D., & Quinn, J. F. (2006). A conservation design for the Central Coast of California and the evaluation of mountain lion as an umbrella species. Natural Areas Journal, 26(2), 137–148. https://doi.org/10.3375/0885-8608(2006)26[137:ACDFTC]2.0.CO;2.

  • Urban, D., Minor, E., Treml, E., & Schick, R. (2009). Graph models of habitat mosaics. Ecology Letters, 12(3), 260–273.

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499. https://doi.org/10.1126/science.277.5325.494.

    Article  CAS  Google Scholar 

  • Zuidema, P. A., Sayer, J. A., & Dijkman, W. (1996). Forest fragmentation and biodiversity: the case for intermediate-sized conservation areas. Environmental Conservation, 23(04), 290–297.

    Article  Google Scholar 

Download references

Funding

This study is supported by the Korea Ministry of Environment (MOE, Project No. 2016000210004) as “Public Technology Program based on Environmental Policy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngkeun Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Thorne, J.H., Kim, G. et al. Conserving terrestrial linkages that connect natural landscapes of the Korean Peninsula. Environ Monit Assess 191, 385 (2019). https://doi.org/10.1007/s10661-019-7520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7520-2

Keywords

Navigation