Skip to main content

Advertisement

Log in

Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil is the largest terrestrial carbon pool and has been increasingly recognized to play crucial role to mitigate global warming resulting from climate change and land use and land cover change. The carbon cycle is closely linked with nitrogen cycles and needs to be studied together for their important implications for mitigating land degradations and associated declining productivity. Within the global biodiversity hotspot of Himalayas, which constitutes more than one third of India’s carbon pool, the Eastern Himalayas in spite of having highest forest cover, protected area network coverage, biodiversity, and endemicity have been understudied for soil carbon and nitrogen dynamics. The present study was designed to assess the patterns and determinants of soil carbon stock, SOC stocks, nitrogen stocks, and carbon/nitrogen (C:N) ratio along the altitudinal gradient, forest type, and depth in Darjeeling Himalayas, India. We followed standard protocol for soil sampling and analysis. The soil carbon stocks (257.02 to 527.79 MgC ha−1), SOC stocks (152.55 to 398.88 MgC ha−1), and soil nitrogen stocks (15.10 to 32.38 MgN ha−1) increased (but C:N ratio 15.13 to 19.12 declined) along the altitudinal gradient (154 to 3170 m), forest types (tropical moist deciduous forest: MWLS < East Himalayan temperate forest: NVNP < East Himalayan sub-alpine forest: SNP) and annually (year 1 < year 2); however, opposite pattern was observed with increase in depths. The soil carbon stocks, SOC stocks, soil nitrogen stocks, and C:N ratio showed strong effects of forest type, depth, elevation, NDVI, bulk density, MI, and AET. Additionally, there was strong relationship of MAP with soil carbon stock and SOC stock, MAT with C:N ratio, and year of sampling with SOC stocks and C:N ratio. The soil carbon stocks, SOC stocks, and soil nitrogen stocks showed negative correlation with different environmental factors (MAT, MAP, NDVI, MI, AET), but positive correlation with elevation, however, C:N ratio had weak positive correlation. We conclude that the different forests types of Darjeeling Himalayas encompassing wide elevation gradient have high levels of soil carbon stocks, SOC stocks, soil nitrogen stocks, and C:N ratio, and hence must be properly managed to maximize their soil carbon sequestration potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abere, F., Belete, Y., Kefalew, A., & Soromessa, T. (2017). Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. Journal of Sustainable Forestry, 36(6), 604–622.

    Article  Google Scholar 

  • Banerjee, S. K. (2014). Forest soil carbon Stock along an altitudinal gradient in Darjeeling Himalayan Region. Indian Forester, 140(8), 775–779.

    Google Scholar 

  • Banerjee, S. C., & Badola, K. C. (1980). Nature and properties of some Deodar forest soils of Chakrata forest division (UP). Indian Forester, 106, 558–564.

    Google Scholar 

  • Banerjee, S. P., & Sharma, S. D. (1990). Soil characteristics of chandars of eastern Uttar Pradesh. Indian Forester, 116, 723–729.

    Google Scholar 

  • Banerjee, S. P., Sharma, S. D., & Gairola, S. K. (1981). Soil characteristics of sal forest-chander ecotone in South Kheri. Indian Forester, 107(8), 492–499.

    Google Scholar 

  • Banerjee, S. P., Mathur, K. C., & Sharma, S. D. (1990). Soils of south Kheri forests of Uttar Pradesh. Indian Forester, 116(6), 479–486.

    Google Scholar 

  • Banerjee, S. K., Gupta, R. D., Jha, M. N., & Das, T. H. (1998). Status, nature and characteristics of soil organic matter in Himalayan and sub-Himalayan region. Bulletin of Indian Society of Soil Science, 19, 14–30.

    Google Scholar 

  • Bao, X., Zhu, X., Chang, X., Wang, S., Xu, B., Luo, C., Zhang, Z., Wang, Q., Rui, Y., & Cui, X. (2016). Effects of soil temperature and moisture on soil respiration on the Tibetan Plateau. PLoS One, 11(10), e0165212.

    Article  CAS  Google Scholar 

  • Barré, P., Durand, H., Chenu, C., Meunier, P., Montagne, D., Castel, G., Billiou, D., Soucémarianadin, L., & Cécillon, L. (2017). Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma, 285(1), 50–56.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (1998). Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biology and Fertility of Soils, 27(3), 230–235.

    Article  CAS  Google Scholar 

  • Bazezew, M. N., Soromessa, T., & Bayable, E. (2015). Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. Journal of Ecology and the Natural Environment, 7(1), 14–22.

    Article  Google Scholar 

  • Bhardwaj, D. R., Banday, M., Pala, N. A., & Rajput, B. S. (2016). Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya. Environmental Monitoring and Assessment, 188(11), 635.

    Article  CAS  Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science, 79(5), 655–660.

    CAS  Google Scholar 

  • Bhusal, M., & Pandey, H. P. (2016). A comparative study on carbon stock in Sal (Shorea robusta) forest in two different ecological regions of Nepal. Banko Janakari, 26(1), 24–31.

    Article  Google Scholar 

  • Borah, M., Das, D., Kalita, J., Boruah, H. P. D., Phukan, B., & Neog, B. (2015). Tree species composition, biomass and carbon stocks in two tropical forest of Assam. Biomass and Bioenergy, 78, 25–35.

    Article  Google Scholar 

  • Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International, 8(4), 45–59.

    Article  Google Scholar 

  • Brown, S., Shoch, D., Pearson, T., & Delaney, M. (2004). Methods for measuring and monitoring forestry carbon projects in California. Winrock International, for the California Energy Commission, PIER Energy- Related Environmental Research.

  • Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G., III. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70–85.

    Article  Google Scholar 

  • Chakravorty, B., & Chakravarti, S. K. (1980). Studies on physicochemical characteristics of some soils of the eastern Himalayan region. Journal of Indian Society of Soil Science, 28(3), 319–322.

    CAS  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. New Delhi: Government of India Publications.

    Google Scholar 

  • Chaudhri, K. G., Chibber, R. K., & Satyanarayana, K. V. S. (1977). Physiochemical properties of some forest soils formed from different parent materials in Himachal Pradesh. Indian Forester, 103, 289–299.

    CAS  Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2003). Soil organic carbon pool in Indian forests. Forest Ecology and Management, 173(1–3), 187–199.

    Article  Google Scholar 

  • Choudhary, B. K., Majumdar, K., & Datta, B. K. (2016). Effects of land use on the soil organic carbon storage potentiality and edaphic factors in Tripura, Northeast India. American Journal of Climate Change, 5, 417–429.

    Article  Google Scholar 

  • Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environment Monitoring and Assessment, 187, 55. https://doi.org/10.1007/s10661-015-4299-7.

    Article  CAS  Google Scholar 

  • Das, S. N., & Roy, B. B. (1982). Characterisation and classification of some upland soils. Indian Forester, 108(10), 660–668.

    CAS  Google Scholar 

  • Díaz-Hernández, J. L. (2010). Is soil carbon storage underestimated? Chemosphere, 80(3), 346–349.

    Article  CAS  Google Scholar 

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185–190.

    Article  CAS  Google Scholar 

  • Djukic, I., Zehetner, F., Tatzber, M., & Gerzabek, M. H. (2010). Soil organic-matter stocks and characteristics along an alpine elevation gradient. Journal of Plant Nutrition and Soil Science, 173(1), 30–38.

    Article  CAS  Google Scholar 

  • Eswaran, H., Berg, E. V. D., & Reich, P. (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192–194.

    Article  Google Scholar 

  • FAO. (2010). Global Forest Resources Assessment 2010. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Fontaine, S., Bardoux, G., Abbadie, L., & Mariotti, A. (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7(4), 314–320.

    Article  Google Scholar 

  • Guerra-Santos, J. J., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Damián-Hernández, D. L., Sánchez-Junco, R. C., & Carrió, E. D. C. G. (2014). Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations. Journal of Forestry Research, 25(1), 129–134.

    Article  CAS  Google Scholar 

  • Gupta, M. K., & Singh, R. P. (1990). Studies on some physical properties of soils under different forest covers and land uses in Himachal Pradesh. Van Vigyan, 28(3), 86–93.

    Google Scholar 

  • Gurung, M. B., Bigsby, H., Cullen, R., & Manandhar, U. (2015). Estimation of carbon stock under different management regimes of tropical forest in the Terai Arc Landscape, Nepal. Forest Ecology and Management, 356, 144–152.

    Article  Google Scholar 

  • Hagedorn, F., Martin, M., Rixen, C., Rusch, S., Bebi, P., Zürcher, A., Siegwolf, R. T. W., Wipf, S., Escape, C., Roy, J., & Hättenschwiler, S. (2010). Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry, 97(1), 7–19.

    Article  CAS  Google Scholar 

  • ISFR (2017). India State of Forest Report 2017. Forest survey of India, Ministry of Environment and Forest, Dehradun. Available online at: http://fsi.nic.in/forest-report-2017

  • Jackson, E. G. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.

    Article  Google Scholar 

  • Jha, M. N., Gupta, M. K., Saxena, A., & Kumar, R. (2003). Soil organic carbon store in different forests in India. Indian Forester, 129, 714–724.

    Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.

    Article  Google Scholar 

  • Jose, A. I., & Koshy, M. M. (1972). A study of the morphological, physical and chemical characteristics of soils as influenced by teak vegetation: 1. Indian Forester, 98, 338–345.

    Google Scholar 

  • Kaul, Z., Dadhwal, V. K., & Mohren, G. M. J. (2009). Land use change and net C flux in Indian forests. Forest Ecology and Management, 258, 100–108.

    Article  Google Scholar 

  • Kirschbaum, M. U. (2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48(1), 21–51.

    Article  CAS  Google Scholar 

  • Krishan, R., Tiwari, O. P., Rana, Y. S., Mishra, A. K., & Sharma, C. M. (2017). Changes in levels of soil carbon and forest floor carbon stocks in the different temperate forests of Garhwal Himalaya. Int J Cur Res Rev, 9(7), 5.

    CAS  Google Scholar 

  • Kumar, P., & Gupta, M. K. (2017). Sequestered organic carbon in the soils under three different natural Forest communities and barren lands in the region of Garhwal Himalayas, Uttarakhand, India. eJournal of Applied Forest Ecology, 5(1), 8–12.

    CAS  Google Scholar 

  • Lal, R. (1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science, 1(4), 307–326.

    CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22.

    Article  CAS  Google Scholar 

  • Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895.

    Article  CAS  Google Scholar 

  • Li, P., Wang, Q., Endo, T., Zhao, X., & Kakubari, Y. (2010). Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma, 154(3–4), 407–415.

    Article  CAS  Google Scholar 

  • Litton, C. M., Ryan, M. G., & Knight, D. H. (2004). Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecological Applications, 14(2), 460–475.

    Article  Google Scholar 

  • Liu, T., Wang, L., Feng, X., Zhang, J., Ma, T., Wang, X., & Liu, Z. (2018). Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands. Biogeosciences, 15(5), 1627–1641.

    Article  Google Scholar 

  • Ma, R., Shi, J., & Zhang, C. (2018). Spatial and temporal variation of soil organic carbon in the North China plain. Environmental Monitoring and Assessment, 190(6), 357.

    Article  CAS  Google Scholar 

  • Malhi, Y. A., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22(6), 715–740.

    Article  CAS  Google Scholar 

  • Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., & Saatchi, S. (2010). Introduction: Elevational gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 16, 3171–3175.

    Article  Google Scholar 

  • Martin, D., Lal, T., Sachdev, C. B., & Sharma, J. P. (2010). Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agriculture, Ecosystems & Environment, 138(1–2), 64–73.

    Article  CAS  Google Scholar 

  • Martin, M. P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., & Arrouays, D. (2011). Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 8, 1053–1065.

    Article  CAS  Google Scholar 

  • Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., et al. (2011). Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences, 108(23), 9508–9512.

    Article  CAS  Google Scholar 

  • Meredith, M. E. (2017). wiqid: Quick and dirty estimates for wildlife populations. R package version 0.1.3. Available online at: http://CRAN.R-project.org/package=wiqid

  • Minhas, R. S., & Bora, N. C. (1982). Distribution of organic C and the forms of nitrogen in topographic sequence of soils. Journal of Indian Society of Soil Science, 30(2), 135–139.

    CAS  Google Scholar 

  • Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. Zachos & J. Habel (Eds.), Biodiversity hotspots (pp. 3–22). Berlin: Springer.

    Chapter  Google Scholar 

  • Mohanraj, R., Saravanan, J., & Dhanakumar, S. (2011). Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest-Biogeosciences and Forestry, 4(2), 61.

    Article  Google Scholar 

  • Mongia, A. D., & Bandyopadhyay, A. K. (1992). Physico-chemical changes occurring in soils after clear felling for high valueplantation crops. Journal of the Indian Society for Soil Science, 40, 420–424.

    CAS  Google Scholar 

  • Nair, K. M., Chamuah, G. S., & Deshmukh, S. N. (1989). Forest soils of Meghalaya, their characterisation, classification and constraints to productivity. Van Vigyan, 27(1), 34–41.

    Google Scholar 

  • Narain, P., Singh, R., & Singh, K. (1990). Infuence of forest covers onphysico-chemical and site characteristics in dun valley. Indian Forester, 116(11), 901–916.

    Google Scholar 

  • Negi, S. S. (1998). Discovering the Himalaya (Vol. 1). New Delhi: Indus Publishing.

    Google Scholar 

  • Negi, S. S., Gupta, M. K., & Sharma, S. D. (2013). Sequestered organic carbon pool in the forest soils of Uttarakhand state, India. International Journal of Science, Environment and Technology, 2(3), 510–520.

    Google Scholar 

  • Oksanen, J., Blanchet, G. F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … & Wagner, H. (2017). vegan: Community Ecology Package. R package version 2.4-5. Available online at: https://CRAN.R-project.org/package=vegan

  • Pandey, H. P., & Bhusal, M. (2016). A comparative study on carbon stock in Sal (Shorea robusta) forest in two different ecological regions of Nepal. Banko Janakari, 26(1), 24–31.

    Article  Google Scholar 

  • Paudel, P., Gautam, P., Dhakal, G., Thapa, B., Acharya, J., Acharya, R. P., et al. (2016). Assessment of soil organic carbon of tropical forest (Terai Sal-Shorea robusta) of Nepal. Nepalese Journal of Agricultural Sciences, 14, 35–42.

    Google Scholar 

  • Paul, S., Veldkamp, E., & Flessa, H. (2008). Soil organic carbon in density fractions of tropical soils under forest – Pasture secondary forest land use changes. European Journal of Soil Science, 59, 359–371.

    Article  Google Scholar 

  • Polyakov, V., & Lal, R. (2004). Modeling soil organic matter dynamics as affected by soil water erosion. Environment International, 30(4), 547–556.

    Article  CAS  Google Scholar 

  • Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159.

    Article  CAS  Google Scholar 

  • Prasad, K. G., Singh, S. B., Gupta, G. N., & George, M. (1985). Studies on changes in soil properties under different vegetations. Indian Forester, 11(10), 794–801.

    Google Scholar 

  • Prasad, K. G., Singh, S. B., George, M., & Singh, J. (1986). Relative effects of vegetation and rainfall on soil properties. Van Vigyan, 24(3–4), 91–95.

    Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing URL http://www.R-project.org/.

    Google Scholar 

  • Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., & Vitousek, P. M. (2006). Temperature influences carbon accumulation in moist tropical forests. Ecology, 87(1), 76–87.

    Article  Google Scholar 

  • Raina, A. K., Jha, M. N., & Pharsi, S. C. (1999). Morphology, mineralization, genesis and classification of soils of Garhwal Himalayas developed on different parent minerals. Annu. For., 7(2), 269–276.

    Google Scholar 

  • Rajamannar, A., & Krishnamoorthy, K. K. (1978). A note on influence of altitude on the physic-chemical characteristics of forest soils. Journal of Indian Soil Society, 26(4), 399–400.

    CAS  Google Scholar 

  • Ramachandran, A., Jayakumar, S., Haroon, R. M., Bhaskaran, A., & Arockiasamy, D. I. (2007). Carbon sequestration: Estimation of carbon stock in natural forests using geospatial technology in the eastern Ghats of Tamil Nadu, India. Current Science, 323–331.

  • Ravindranath, N. H., Somashekhar, B. S., & Gadgil, M. (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297–320.

    Article  CAS  Google Scholar 

  • Samra, J. S., Payal, P. S., & Sharma, S. D. (1985). Soil characteristics and quality class of sal in west Dehradun. Indian Forester, 9, 725–725.

    Google Scholar 

  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575–9580.

    Article  CAS  Google Scholar 

  • Sanderman, J., Baldock, J., Hawke, B., Macdonald, L., Puccini, A., & Szarvas, S. (2011). National soil carbon research programme: field and laboratory methodologies. Canberra: CSIRO.

    Google Scholar 

  • Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., & Lichter, J. (2001). Limited carbon storage in soil and litter of experimental forest plots under increase atmospheric CO2. Nature, 411, 466–469.

    Article  CAS  Google Scholar 

  • Schrumpf, M., Kaiser, K., & Schulze, E.-D. (2014). Soil organic carbon and Total nitrogen gains in an old growth deciduous forest in Germany. PLoS One, 9(2), e89364. https://doi.org/10.1371/journal.pone.0089364.

    Article  CAS  Google Scholar 

  • Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., & Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Biosciences, 36(4), 701–708.

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Kumar, M., & Bussmann, R. W. (2009). Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Management, 4(1), 6. https://doi.org/10.1186/1750-0680-4-6.

    Article  CAS  Google Scholar 

  • Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12, 28–38.

    Article  Google Scholar 

  • Singh, O. P., & Datta, B. (1983). Characteristics of some hill soils of Mizoram in relation to altitude. Journal of the Indian Society of Soil Science, 31(4), 657–661.

    CAS  Google Scholar 

  • Singh, K., Sharma, S. K., Singhal, R. M., Samra, J. S., & Sharma, S. D. (1982). A comparative study of saline-sodic, sodic and normal soils in relation to forest growth of South Kheri Forest Division,(UP). Indian Forester, 108(7), 471–480.

    CAS  Google Scholar 

  • Singh, B., Nath, S., Das, P. K., Singh, S. B., & Banerjee, S. K. (1987). Soil characteristics under introduced Cryptomeria japonica in Darjeeling region. Indian Forester, 113(3), 191–201.

    Google Scholar 

  • Singh, O. P., Datta, B., & Rao, C. N. (1991). Pedochemical characterisation and genesis of soils in relation to altitude in Mizoram. Journal of the Indian Society of Soil Science, 39(4), 739–750.

    Google Scholar 

  • Singhal, R. M., Samra, J. S., Sharma, S. D., Pande, P., & Sharma, S. K. (1982). Soil biosequences of a forestland of Doon valley. Indian Forester, 108(4), 293–299.

    Google Scholar 

  • Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser, C. A., & Cronin, T. W. (2008). Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate, 21(15), 3776–3796.

    Article  Google Scholar 

  • Sombroek, G. W., Nachtergaele, O. F., & Habel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22(7), 417–426.

    Google Scholar 

  • Sreenivas, K., Dadhwal, V. K., Kumar, S., Harsha, G. S., Mitran, T., Sujatha, G., Suresh, G. J. R., Fyzee, M. A., & Ravisankar, T. (2016). Digital mapping of soil organic and inorganic carbon status in India. Geoderma, 269, 160–173.

    Article  CAS  Google Scholar 

  • Srivastava, R., Gaikwad, S. T., & Ram, T. (1991). Characteristics and classification of some forest soils of Chandrapur district of Maharashtra. Van Vigyan, 29(4), 234–238.

    Google Scholar 

  • Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., et al. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.

    Article  CAS  Google Scholar 

  • Tashi, S., Singh, B., Keitel, C., & Adams, M. (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22, 2255–2268.

    Article  Google Scholar 

  • Totey, N. G., Bhowmik, A. K., & Khatri, P. K. (1986a). Performance of sal on soils derived from different parent materials in Shahdol foret divisions, MP. Indian Forester, 112(1), 18–31.

    Google Scholar 

  • Totey, N. G., Bhowmik, A. K., & Khatri, P. K. (1986b). Effect of forest cover on physic-chemical properties of soils developed on sandstone. Indian Forester, 112(4), 314–327.

    CAS  Google Scholar 

  • Tran, D. B., & Dargusch, P. (2016). Melaleuca forests in Australia have globally significant carbon stocks. Forest Ecology and Management, 375, 230–237.

    Article  Google Scholar 

  • Van Groenigen, J. W., Van Kessel, C., Hungate, B. A., Oenema, O., Powlson, D. S., & Van Groenigen, K. J. (2017). Sequestering soil organic carbon: a nitrogen dilemma. Environmental Science and Technology, 51, 4738–4739.

    Article  CAS  Google Scholar 

  • Velayutham, M., Pal, D. K., & Bhattacharyya, T. (2000). Organic carbon stock in soils of India. In R. Lal, J. M. Kimble, & B. A. Stewart (Eds.), Global climate change and tropical ecosystems (pp. 71–96). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Walkeley, A. (1947). A critical examination of a rapid method for determination of organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–257.

    Article  Google Scholar 

  • Walz, J., Knoblauch, C., Bohme, L., & Pfeiffer, E.-M. (2017). Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biology and Biochemistry, 110, 34–43.

    Article  CAS  Google Scholar 

  • Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56, 316–324.

    Google Scholar 

  • Yadav, J. S. P., & Sharma, D. R. (1968). A soil investigation with reference to sal and teak in Madhya Pradesh. Indian Forester, 94, 890–897.

    Google Scholar 

Download references

Acknowledgements

We would like to thank West Bengal Forest Department specially the PCCF and DFO, Darjeeling Silviculture (Hills) division for the permission to carry out this research work and all the supports. We also acknowledge the support from Professor K.V. Deviprasad, Dr. Binod Sharma, Raju Pradhan, Kishor Sharma, Sailendra Dewan, Prashant Ghose, Sharma ji, Nayan Thapa, and Paras Mani Pradhan at different stages of the study.

Funding

SBD is supported by the University Grants Commission, New Delhi (Non-NET), through fellowship grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samjetsabam Bharati Devi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 39.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S.B., Sherpa, S.S.S.S. Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India. Environ Monit Assess 191, 361 (2019). https://doi.org/10.1007/s10661-019-7470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7470-8

Keywords

Navigation