Skip to main content

Advertisement

Log in

Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): sensitivity analysis and calibration of runoff parameters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The characteristics of surface runoff and the infiltration properties of urban green land are important to determine the effects of runoff reduction by low-impact development (LID) facilities. In this paper, two typical types of urban green land (lawn and shrub) in Shanghai were selected to study the runoff characteristics under eight rainfall events. The sensitivity of the runoff parameters was analyzed, and then, the optimal parameters were determined using the Stormwater Management Model (SWMM). The results showed that the interception and infiltration capacities of shrub were greater than those of lawn. The rainfall intensity and rainfall pattern were the major factors that influenced the interception and infiltration of rainwater. The threshold value that generates runoff varied across the eight rainfall events ranged from 1.6 to 28.5 mm for lawn and 4.5 to 32.0 mm for shrub. The maximum reduction ratios of runoff and peak flow for shrub were 52 and 57% higher than them for lawn, respectively. The parameters for shrub were more sensitive to runoff and peak flow compared with those for lawn. Under light rainfalls with a short duration, the maximum infiltration rate and depression storage were more sensitive than those under heavy rainfalls with a long duration. Antecedent dry weather period was not found to be a sensitive parameter except for the shrub under light rainfalls. The relative errors of runoff and dynamic mean runoff (60 min) for lawn and shrub were within ± 9.5%. The errors of peak flow ranged between − 21 and 16.6%. The dynamic runoff characteristics and the parameters for lawn and shrub determined in this study can provide references for simulating urban runoff and planning LID areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akram, S., Yu, B. F., & Ghadiri, H. (2015). Modelling flow and sediment trapping upstream and within grass buffer strips. Hydrological Processes, 29(14), 3179–3192.

    Article  Google Scholar 

  • Baek, S.-S., Choi, D.-H., Jung, J.-W., Lee, H.-J., Lee, H., Yoon, K.-S., & Cho, K. H. (2015). Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Research, 86, 122–131.

    Article  CAS  Google Scholar 

  • Barco, J., Wong, K. M., & Stenstrom, M. K. (2008a). Automatic calibration of the US EPA SWMM model for a large urban catchment. Journal of Hydraulic Engineering ASCE, 134(4), 466–474.

    Article  Google Scholar 

  • Barco, J., Wong, K. M., & Strenstrom, M. K. (2008b). Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. Journal of Hydraulic Engineering, 134(4), 466–474.

    Article  Google Scholar 

  • Beling F. A., Garcia, J.I.B., Paiva, E.M.C.D., Bastos, G.A.P. and Paiva, J.B.D. (2011) Analysis of the SWMM Model Parameters for Runoff Evaluation in Periurban Basins from Southern Brazil. 12nd international conference on urban drainage, Porto Alegre, Brazil.

  • Benedetti, L., Blumensaat, F., Bonisch, G., Dirckx, G., Jardin, N., Krebs, P., & Vanrolleghem, P. A. (2005). Systems analysis of urban wastewater systems—two systematic approaches to analyse a complex system. Water Science and Technology, 52(12), 171–179.

    Article  CAS  Google Scholar 

  • Burszta-Adamiak, E., & Mrowiec, M. (2013). Modelling of green roofs’ hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36–42.

    Article  CAS  Google Scholar 

  • Chandramouli, S., & Natarajan, N. (2016). a comparative study on the infiltration characteristics of soils in Srikakulam District, Andhra Pradesh, India. Asian Journal of Water Environment and Pollution, 13, 73–79.

  • Cheng, L., Kun, D., Jia-peng, T., & Wei-xin, D. (2017). Optimal placement of pressure sensors in water distribution system based on clustering analysis of pressure sensitive matrix. Procedia Engineering, 186, 405–411.

    Article  Google Scholar 

  • Choi, K.-s., & Ball, J. E. (2002). Parameter estimation for urban runoff modelling. Urban water, 4(1), 31–41.

    Article  Google Scholar 

  • Chui, T. F. M., Liu, X., & Zhan, W. (2016). Assessing cost-effectiveness of specific LID practice designs in response to large storm events. Journal of Hydrology, 533, 353–364.

    Article  Google Scholar 

  • Chung, S.-W., 박형석, & 최환규. (2015). Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석). Journal of Environmental Impact Assessment, 24(1), 16–34.

    Article  Google Scholar 

  • Davis, A. P. (2005). Green engineering principles promote low-impact development. Environmental Science & Technology, 39(16), 338A–344A.

    Article  CAS  Google Scholar 

  • di Pierro, F., Khu, S. T., & Savic, D. (2006). From single-objective to multiple-objective multiple-rainfall events automatic calibration of urban storm water runoff models using genetic algorithms. Water Science and Technology, 54(6–7), 57–64.

    Article  Google Scholar 

  • Dietz, M. E., & Clausen, J. C. (2008). Stormwater runoff and export changes with development in a traditional and low impact subdivision. Journal of Environmental Management, 87, 560–566.

    Article  Google Scholar 

  • dos Santos, T. E. M., de Souza, E. R., & Montenegro, A. A. A. (2016). Modeling of soil water infiltration with rainfall simulator in different agricultural systems. Revista Brasileira De Engenharia Agricola E Ambiental, 20(6), 513–518.

    Article  Google Scholar 

  • Duan, R., Fedler, C. B., & Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29, 379–389.

    Article  Google Scholar 

  • Fernandez-Pato, J., Caviedes-Voullieme, D., & Garcia-Navarro, P. (2016). Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. Journal of Hydrology, 536, 496–513.

    Article  Google Scholar 

  • Fischer, C., Tischer, J., Roscher, C., Eisenhauer, N., Ravenek, J., Gleixner, G., Attinger, S., Jensen, B., de Kroon, H., Mommer, L., Scheu, S., & Hildebrandt, A. (2015). Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant and Soil, 397(1–2), 1–16.

    Article  CAS  Google Scholar 

  • Francos, A., Elorza, F. J., Bouraoui, F., Bidoglio, G., & Galbiati, L. (2003). Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering & System Safety, 79(2), 205–218.

    Article  Google Scholar 

  • Fraser, G. W., & Stone, G. S. (2016). The effect of soil and pasture attributes on rangeland infiltration rates in northern Australia. Rangeland Journal, 38(3), 245–259.

    Article  Google Scholar 

  • Gilroy, K. L., & McCuen, R. H. (2009). Spatio-temporal effects of low impact development practices. Journal of Hydrology, 367(3–4), 228–236.

    Article  Google Scholar 

  • Gironás J., Roesner L. A., Davis J. and Rossman L. A. (2009). Storm Water Management Model Applications Manual. National Risk Management Research Laboratory Office Of Research And Development U.S. Environmental Protection Agency. Cincinnati, Oh 45268.

  • Gu, X., Liao, Z., Zhang, G., Xie, J., & Zhang, J. (2017). Modelling the effects of water diversion and combined sewer overflow on urban inland river quality. Environmental Science and Pollution Research, 24(26), 21038–21049.

    Article  CAS  Google Scholar 

  • Guan, M., Sillanpaa, N., & Koivusalo, H. (2015). Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland. Water Science and Technology, 71(10), 1485–1491.

    Article  Google Scholar 

  • Guanjun, H. A. O., Ruijun, H. A. O., Lieying, S., Ziwen, L. U., Yizhen, H., Xiaoyi, Z., & Hailan, F. (2008). Study on the soil fertility characteristics of Shanghai World Exposition site (上海世博会规划区典型绿地土壤肥力特性研究). Acta Agriculturae Shanghai, 24(4), 14–19.

    Google Scholar 

  • Hua, P., Vasyukova, E., & Uhl, W. (2015). A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter. Water Research, 75, 109–122.

    Article  CAS  Google Scholar 

  • Hua, P., Ma, S., Ding, W., & Zhang, J. (2017). Structure analysis of pipe section reactor for Pipe-Wall reaction: a computational fluid dynamics analysis approach. Water. Air, & Soil Pollution, 228(11), 422.

    Article  Google Scholar 

  • Krebs, G., Kokkonen, T., Valtanen, M., Koivusalo, H., & Setala, H. (2013). A high resolution application of a Stormwater Management Model (SWMM) using genetic parameter optimization. Urban Water Journal, 10(6), 394–410.

    Article  Google Scholar 

  • Kun, D., Tian-Yu, L., Jun-Hui, W., & Jin-Song, G. (2015). Inversion model of water distribution systems for nodal demand calibration. Journal of Water Resources Planning and Management, 141(9), 04015002.

    Article  Google Scholar 

  • Lee, J. M., Hyun, K. H., Choi, J. S., Yoon, Y. J., & Geronimo, F. K. F. (2012). Flood reduction analysis on watershed of LID design demonstration district using SWMM5. Desalination and Water Treatment, 38(1–3), 326–332.

    Article  Google Scholar 

  • Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 27(9–10), 645–654.

    Article  Google Scholar 

  • Li, J., Gong, Y., Zhu, M., & Zhang, Q. (2012). LID stormwater control effect simulation based on SWMM (基于Swmm模型的低影响开发雨洪控制效果模拟). China Water & Wastewater, 28(21), 42–44.

    Google Scholar 

  • Liao, Z. L., Zhang, G. Q., Wu, Z. H., He, Y., & Chen, H. (2015). Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China. Water Science and Technology, 71(8), 1136–1142.

    Article  CAS  Google Scholar 

  • Liong, S. Y., Chan, W. T., & Lum, L. H. (1991). Knowledge-based system for SWMM runoff component calibration. Journal of Water Resources Planning and Management, 117, 507–524.

    Article  Google Scholar 

  • Liu, Y.-J., Wang, T.-W., Cai, C.-F., Li, Z.-X., & Cheng, D.-B. (2014). Effects of vegetation on runoff generation, sediment yield and soil shear strength on road-side slopes under a simulation rainfall test in the Three Gorges Reservoir Area, China. Science of the Total Environment, 485, 93–102.

    Article  Google Scholar 

  • Mallari, K. J. B., Kim, H., Pak, G., Aksoy, H., & Yoon, J. (2015). A comparison of two infiltration models applied to simulation of overland flow over a two-dimensional flume. Water Science and Technology, 71(9), 1325–1332.

    Article  CAS  Google Scholar 

  • Mancipe-Munoz, N. A., Buchberger, S. G., Suidan, M. T., & Lu, T. (2014). Calibration of rainfall-runoff model in urban watersheds for stormwater management assessment. Journal of Water Resources Planning and Management, 140(6), 11.

    Article  Google Scholar 

  • McCuen, R.H., Johnson, P.A. & Ragan, R.M., 1996. Highway hydrology: Hydraulic design series No. 2 (No. FHWA-SA-96-067).

  • MD, M. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2).

  • MOHURD (2014). Technical guide for the construction of Sponge City: construction of low impact development system. Ministry of Housing and Urban-Rural Development of the People's Republic, Beijing, China.

  • Pappas, E. A., Smith, D. R., Huang, C., Shuster, W. D., & Bonta, J. V. (2008). Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena, 72(1), 146–152.

    Article  Google Scholar 

  • Rawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering, 109, 62–70.

    Article  Google Scholar 

  • Rosa, D. J., Clausen, J. C., & Dietz, M. E. (2015). Calibration and verification of SWMM for low impact development. Journal of the American Water Resources Association, 51(3), 746–757.

    Article  Google Scholar 

  • Rossman L. A. (2010). Storm water management model user's manual, version 5.0. National Risk Management Research Laboratory, Office Of Research And Development U.S. Environmental Protection Agency Cincinnati, Ohio.

  • Rossman L. (2015). Storm water management model reference manual volume I—hydrology. United States Enviromental Protection Agency.

  • Temprano, J., Arango, O., Cagiao, J., Suarez, J., & Tejero, I. (2006). Stormwater quality calibration by SWMM: a case study in northern Spain. Water SA, 32(1), 55–63.

    CAS  Google Scholar 

  • Tian, W., Liao, Z., & Zhang, J. (2017). An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecological Modelling, 364, 42–52.

    Article  CAS  Google Scholar 

  • Tobio, J. A. S., Maniquiz-Redillas, M. C., & Kim, L. H. (2015). Physical design optimization of an urban runoff treatment system using Stormwater Management Model (SWMM). Water science and technology : a journal of the International Association on Water Pollution Research, 72(10), 1747–1753.

    Article  CAS  Google Scholar 

  • Tsihrintzis, V. A., & Hamid, R. (1998). Runoff quality prediction from small urban catchments using SWMM. Hydrological Processes, 12(2), 311–329.

    Article  Google Scholar 

  • U.E. (2000). Low Impact Development(LID): a literature review. United States Environmental Protection agency, p. EPA-841-B-00-005.

  • Wang, K. H., & Altunkaynak, A. (2012). Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach. Journal of Hydrologic Engineering, 17, 283–291.

    Article  Google Scholar 

  • Xu Z., Wang Y., Li H. and Liao Z. (2015). A kind of runoff collector. In: Patent (ed.), CN 104596789 A.

  • Xu, Z., Xiong, L., Li, H., Yin, H., Wu, J., Xu, J., & Zhang, J. (2017). Pollution characterization and source analysis of the wet weather discharges in storm drainages. Desalination and Water Treatment, 72, 169–181.

    Article  CAS  Google Scholar 

  • Yoon Ho Cho, 임무광, 류성우, 박대근 and 이재훈 (2015). Performance Evaluation of Runoff Reduction for Permeable Pavements using SWMM Model (Swmm 분석을 통한 투수성 포장의 유출 저감 특성 평가). 17(4), 11–18.

  • Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015). Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City. Journal of Irrigation and Drainage Engineering, 141(1), 13.

    Article  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2015a). The build-up dynamic and chemical fractionation of Cu, Zn and Cd in road-deposited sediment. Science of the Total Environment, 532, 723–732.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, J., Hua, P., & Krebs, P. (2015b). The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment. Science of the Total Environment, 505, 90–101.

    Article  CAS  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2016). The influences of dissolved organic matter and surfactant on the desorption of Cu and Zn from road-deposited sediment. Chemosphere, 150, 63–70.

    Article  CAS  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2017a). The influence of surface pavement on the distribution of polycyclic aromatic hydrocarbons (PAHs) in urban watershed. Water. Air, & Soil Pollution, 228(9), 318.

    Article  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2017b). Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environmental Pollution, 228, 158–168.

    Article  CAS  Google Scholar 

  • Zhang, J., Wu, J., Hua, P., Zhao, Z., Wu, L., Fan, G., Bai, Y., Kaeseberg, T., & Krebs, P. (2017c). The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment. Environmental Pollution, 229, 705–714.

    Article  CAS  Google Scholar 

  • Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16(3), 195–231.

    Article  Google Scholar 

Download references

Acknowledgements

The supports from Shanghai Municipal Sewage Company Ltd. and the Municipality and World Expo Urban Best Practice Area Business Co., Ltd., Shanghai, are gratefully acknowledged.

Funding

This study was funded by China’s Major S&T Project on Water Pollution Control and Treatment (Grant No. 2013ZX07304-002), National Natural Science Foundation of China (Grant No. 51679141), and Shanghai Department of Science (Grant Nos. 13210701001 and 13231201402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizheng Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Xiong, L., Li, H. et al. Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): sensitivity analysis and calibration of runoff parameters. Environ Monit Assess 191, 343 (2019). https://doi.org/10.1007/s10661-019-7445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7445-9

Keywords

Navigation