Skip to main content
Log in

Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)—a long-term cause-effect monitoring study using biomarkers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Recording the causes, effects, and effect mechanisms of vegetation health is crucial to understand process-pattern interactions in ecosystem processes. NOX and SOX in the form of air pollution are both triggers and sources of vegetation health that can have an effect on the local or the global level and whose impacts need to be monitored. In this study, the growth patterns in Scots pines (Pinus sylvestris L.) were studied in the context of changing atmospheric depositions in the lowlands of north-eastern Germany. Under the influence of atmospheric sulfur (S) and nitrogen (N) depositions, pine stands showed temporal variations in their normal growth behavior. In such cases, the patterns of normal growth can be suppressed or accelerated. Pine stands which were influenced by high S deposition up until 1990 changed from suppressed growth to accelerated growth by decreasing S, but increasing N depositions between 1990 and 2003. The cause of these changes in pine growth patterns was imbalances in S and N nutrition, in particular, enrichments of sulfate, non-protein nitrogen or arginine, and finally, also imbalances and deficiencies in phosphorus, glucose, and adenosine triphosphate in the needles. Our long-term monitoring study shows that biochemical markers (traits) are crucial bioindicators for the qualitative and quantitative assessment of tree vitality and growth patterns in Scots pines. Furthermore, we were able to show that NOX and SOX depositions need to be monitored locally to be able to assess the local effects of biomolecular markers on the growth patterns in Scots pine stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 4

Similar content being viewed by others

References

  • Beck, W. (2001). Überlegungen zur Erfassung wachstumskundlicher Kenngrößen auf Level-II-Kiefern-Versuchsflächen. Beiträge für Forstwirtschaft und Landschaftsökologie, 35, 33–36.

  • Beck, W. (2002). Wachstumsverhalten und Nettoprimärproduktion der Baumschicht. In S. Anders (Ed.), Ökologie und Vegetation der Wälder Nordostdeutschlands (pp. 42–71). Oberwinter: Verlag Dr. Kessel.

    Google Scholar 

  • Beck, W. (2009). Growth patterns of forest stands—the response towards pollutants and climatic impact. Forest- Biogeosciences and Forestry, 2, 4–6. https://doi.org/10.3832/ifor0472-002.

    Article  Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. https://doi.org/10.1038/Nature11148.

    Article  CAS  Google Scholar 

  • Edfast, A. B., Näsholm, T., & Ericson, A. (1990). Free amino acids concentrations in needles of Norway and Scots pine trees on different sites in areas with two levels of nitrogen deposition. Canadian Journal of Forest Research, 20, 1132–1136.

    Article  CAS  Google Scholar 

  • Eichhorn, J., & Roskams, P. (2013). Assessment of tree conditions. In M. Ferretti & R. Fischer (Eds.), Forest monitoring—methods for terrestrial investigations in Europe with an overview of north America and Asia (Developments in Environmental Science) (Vol. 12, Chapter 8, pp. 139–167). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Erhard, M., & Flechsing, M. A. (1998). Landscape model for the investigation of atmogenic pollution effects on the dynamics of Scots pines. In R. F. Hüttl & K. Bellmann (Eds.), Changes of atmospheric chemistry and effects on forest ecosystems (Nutrient in Ecosystems) (Vol. 3, pp. 283–311). London: Kluwer Academics.

    Chapter  Google Scholar 

  • Galic, N., Sullivan, L. L., Grimm, V., & Forbes, V. E. (2018). When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecology Letters, 21, 568–577. https://doi.org/10.1111/ele.12923.

    Article  Google Scholar 

  • Huhn, G., & Schulz, H. (1996). Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. The New Phytologist, 134, 95–101.

    Article  CAS  Google Scholar 

  • Joiner, J., Yoshida, Y., Schaefer, K., Jung, M., Guanter, L., Zhabg, Y., Garrity, S., Middelton, E. M., Huemmrich, K. F., Gu, L., & Belelli Marchesini, L. (2014). The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sensing of Environment, 152, 375–391.

    Article  Google Scholar 

  • Kraft, S., Del Bello, U., Bouvet, M., Drusch, M., & Moreno, J. (2012). FLEX: ESA’s Earth Explorer 8 candidate mission. Int Geosci Remote Sens Symp. 7125–7128. https://doi.org/10.1109/IGARSS.2012.6352020.

  • Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R.-U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018.

    Article  Google Scholar 

  • Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2016). Understanding forest health by remote sensing—part I—a review of spectral traits, processes and remote sensing characteristics. Remote Sensing, 8, 1029.

    Article  Google Scholar 

  • Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2017). Understanding forest health with remote sensing-part II—a review of approaches and data models. Remote Sensing, 9, 129. https://doi.org/10.3390/rs9020129.

    Article  Google Scholar 

  • Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., Pause, M., Schweitzer, C., Schmulius, C., Settele, J., Skidmore, A., Wegmann, M., Zacharias, S., Kirsten, T., & Schaepman, M. (2018a). Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sensing, 10, 1120. https://doi.org/10.3390/rs10071120.

    Article  Google Scholar 

  • Lausch, A., Olaf, B., Stefan, K., Leitao, P., Jung, A., Rocchini, D., Schaepman, M. E., Skidmore, A. K., Tischendorf, L., & Knapp, S. (2018b). Understanding and assessing vegetation health by in-situ species and remote sensing approaches. Journal: Methods in Ecology and Evolution, 9, 1799–1809. https://doi.org/10.1111/2041-210X.13025.

    Article  Google Scholar 

  • Lembcke, G., Knapp, E., & Dittmar, O. (1975). DDR-Kiefernertragstafel. Institut für Forstwissenschaften. Eberswalde. 1–30.

  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1(603), 591–592.

    Article  Google Scholar 

  • Lorenz, M., & Becher, G. (2012). Forest condition in Europe, (2012) technical report of ICP forests. Work report of the Thünen Institute for World Forestry 201 2/1. ICP Forests, Hamburg, 201 2.

  • Lorenz, M., & Mues, V. (2007). Forest health status in Europe. ScientificWorldJournal, 7(Suppl 1), 22–27. https://doi.org/10.1100/tsw.2007.17.

    Article  CAS  Google Scholar 

  • Malcolm, D. C., & Garforth, M. F. (1977). The sulphur:nitrogen ratio of conifer foliage in relation to atmospheric pollution with sulphur dioxide. Plant and Soil, 47, 87–96.

    Article  Google Scholar 

  • Möller, D., & Schieferdecker, H. (1989). Ammonia emission and deposition of NHx in the G.D.R. Atmospheric Environment, 23, 1187–1193. https://doi.org/10.1016/0004-6981(89)90145-5.

    Article  Google Scholar 

  • Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P., Heurich, M., Jung, A., & Lausch, A. (2016). In situ and remote sensing integration for the assessment of forest health. Remote Sensing, 2016(8), 471. https://doi.org/10.3390/rs8060471.

    Article  Google Scholar 

  • Schulz, H. (2002). Flächendeckende Erfassung von N-haltigen Depositionen mit Hilfe von Baumborken. In: U. Franko (eds.), Stickstoff - ein Nährstoff aus dem Gleichgewicht. UFZ-Bericht 16, 32–45.

  • Schulz, H., & Härtling, S. (2003). Vitality analysis of Scots pines using a multivariate approach. Forest Ecology and Management, 186, 73–84.

    Article  Google Scholar 

  • Schulz, H., Huhn, G., Niehus, B., Liebergeld, G., & Schüürmann, G. (1997). Determination of throughfall rates on the basis of pine bark loads: results of a field study. Air and Waste Manage Association, 47, 510–516.

    Article  CAS  Google Scholar 

  • Schulz, H., Huhn, G., & Härtling, S. (1998). Responses of sulphur- and nitrogen-containing compounds in Scots pine needles along a deposition gradient in eastern Germany. In R. F. Hüttl & K. Bellmann (Eds.), Changes of atmospheric chemistry and effects on forest ecosystems (Nutrient in Ecosystems) (Vol. 3, pp. 37–63). London: Kluwer Academics.

    Chapter  Google Scholar 

  • Schulz, H., Giesemann, A., & Gehre, M. (2004). Influence of reduced S inputs on the sulfate pool in the humus layer and sulfate uptake in Pinus sylvestris L. as indicated by natural isotope variations of sulphur and oxygen. Journal of Applied Botany, 78, 18–24.

    CAS  Google Scholar 

  • Schulz, H., Schäfer, T., Storbeck, V., Härtling, S., Rudloff, R., Köck, M., & Buscot, F. (2012). Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, N uptake, P uptake and growth of P. sylvestris seedlings. Tree Physiology, 32, 36–48.

    Article  CAS  Google Scholar 

  • Schulz, H., Gehre, M., & Russow, R. (2017). Natürliche Isotopenverhältnisse des Stickstoffs zur Bioindikation in Kiefern-Wald-Ökosystemen. Hercynia N. F., 50, 99–114.

  • Tietz, S., & Wild, A. (1991). Investigations on the phosphoenolpyruvate carboxylase activity of spruce needle relative to the occurrence of novel forest decline. Journal of Plant Physiology, 137, 327–331.

    Article  CAS  Google Scholar 

  • Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349, 814–818. https://doi.org/10.1126/science.aac6759.

    Article  CAS  Google Scholar 

  • Umweltbundesamt. (2011). In: G. Schütze, M. Geupel (Eds.), Stickstoff - Zuviel des Guten? Umweltbundesamt, Dessau-Roßlau. 1–42.

  • Weidmann, P., Einig, W., Rogger, W., & Hampp, R. (1990). Contents of ATP and ADP in needles of Norway spruce in relation to their development, age and symptoms of forest decline. Trees, 4, 68–74.

    Article  Google Scholar 

  • Zöttl, H. (1958). Die Bestimmung der Stickstoffmineralisation im Waldhumus durch den Brutversuch. Z. Pflanzenern. Düngung Bodenk. 81, 35–49.

Download references

Acknowledgements

The authors thank Sigrid Härtling and Renate Rudloff (Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Lausch.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Host Schulz and Wolfgang Beck developed and carried out all experiments, analytical investigations, and evaluations for this study. Horst Schulz and Angela Lausch created the paper, tables, and illustrations.

Highlights

• This paper presents a long-term monitoring study for assessing growth patterns

• The growth patterns of Scots pines show temporal variations depending on deposition changes

• Pine stands were influenced by high sulfur (S) and nitrogen (N) depositions

• Growth was caused by an increase in N uptake, but decreased again due to a surplus of N in the pine needles

• The cause of changes in pine growth patterns were nutrient imbalances in S and N concentrations

• The applied approach presented an important indicator for monitoring and assessing the vitality of Scots pines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, H., Beck, W. & Lausch, A. Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)—a long-term cause-effect monitoring study using biomarkers. Environ Monit Assess 191, 159 (2019). https://doi.org/10.1007/s10661-019-7272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7272-z

Keywords

Navigation