Skip to main content

Advertisement

Log in

Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate is a determinant factor in species distribution and climate change will affect the species abilities to occupy geographic regions. Prosopis juliflora is one of the most problematic invasive species and its biological invasion causes various negative effects in tropical, arid, and semi-arid regions of the world. As eradication efforts subsequent to the establishment of an alien invasive species are costly and time-consuming, assessing patterns of the introduction of an invasive species to new regions is among the most cost-effective means of monitoring and management of natural ecosystems. In this study by using the concept of species distribution modeling (SDM) and maximum entropy (MaxEnt) method, the effect of climate change on the current and future distribution of P. juliflora has been assessed at a global scale. Bioclimatic variables in current condition and 2050 regarding two global circulation models (GCM) and two climate change scenarios were considered as explanatory variables. Our results showed that annual mean temperature (BIO1), annual precipitation (BIO12), and temperature mean diurnal range (BIO2) represented more than 87% of the variations in the model, and with an AUC of 0.854 and TSS of 0.51, the model showed a good predictive performance. Our results indicate that on a global scale, suitable ranges for P. juliflora increase across all the GCM and RCP scenarios. In a global scale, Mediterranean Basin, Middle East, and North America are regions with the highest risk of range expansion in the future. Regarding the negative impacts of P. juliflora on structure and function of natural habitats in the invaded areas, findings of this study could be considered as a warning appliance for the environmental monitoring of the regions highly sensitive to the global invasion of the species. We suggest that assessing impacts of climate change on the global distribution of the invasive species could be used as an efficient tool to implement broad-scale and priority-setting monitoring programs in natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboud, A. A., Kisoyan, P. K., & Coppock, D. L. (2005). Agro-pastoralists’ wrath for the Prosopis tree: The case of the IL Chamus of Baringo District, Kenya. Global Livestock Collaborative Research Support Program. USA: University of California at Davis.

  • Al-Rawahy, S. H., Al-Dhafri, K. S., & Al-Bahlany, S. S. (2003). Germination, growth and drought resistance of native and alien plant species of the genus Prosopis in the Sultanate of Oman. Asian Journal of Plant Sciences, 2(14), 1020–1023.

    Google Scholar 

  • Alban, L., Matorel, M., Romero, J., Grados, N., Cruz, G., & Felker, P. (2002). Cloning of elite, multipurpose trees of the Prosopis juliflora/pallida complex in Piura. Peru Agroforestry Systems, 54, 173–182.

    Google Scholar 

  • Alexander, J. M., & Edwards, P. J. (2010). Limits to the niche and range margins of alien species. Oikos, 119(9), 1377–1386.

    Google Scholar 

  • Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4(5), 585–589.

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.

    CAS  Google Scholar 

  • Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419–431.

    Google Scholar 

  • Early, R., & Sax, D. F. (2014). Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23(12), 1356–1365.

    Google Scholar 

  • Ehrenfeld, J. G. (2010). Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59–80.

    Google Scholar 

  • El-Keblawy, A., & Al-Rawai, A. (2005). Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) DC. Journal of Arid Environments, 61(4), 555–565.

    Google Scholar 

  • El-Keblawy, A., & Al-Rawai, A. (2007). Impacts of the invasive exotic Prosopis juliflora (Sw.) DC on the native flora and soils of the UAE. Plant Ecology, 190(1), 23–35.

    Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Google Scholar 

  • Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342.

    Google Scholar 

  • Evangelista, P. H., Kumar, S., Stohlgren, T. J., Jarnevich, C. S., Crall, A. W., Norman, J. B., III, et al. (2008). Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14(5), 808–817.

    Google Scholar 

  • Fandohan, A. B., Oduor, A. M., Sodé, A. I., Wu, L., Cuni-Sanchez, A., Assédé, E., et al. (2015). Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability, 1(6), 1–12.

    Google Scholar 

  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W. J., et al. (2013). Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013 (Vol. 5, pp. 741–866).

    Google Scholar 

  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.

  • Franks, S. J., Weber, J. J., & Aitken, S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications, 7(1), 123–139.

    Google Scholar 

  • Gallagher, R. V., Beaumont, L. J., Hughes, L., & Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98(4), 790–799.

    Google Scholar 

  • Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models–how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.

    Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183), 1247579.

    Google Scholar 

  • Geesing, D., Al-Khawlani, M., & Abba, M. L. (2004). Management of introduced Prosopis species: can economic exploitation control an invasive species? Unasylva, Forest threats, 55, 36–44.

    Google Scholar 

  • Genovesi, P. (2005). Eradications of invasive alien species in Europe: a review. Biological Invasions, 7(1), 127–133.

    Google Scholar 

  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991.

    Google Scholar 

  • Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25(6), 325–331.

    Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Google Scholar 

  • Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435.

    Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543.

    Google Scholar 

  • Hijmans, R., Guarino, L., & Mathur, P. (2012). DIVA-GIS. Version 7.5. A geographic information system for the analysis of species distribution data. Available at: www. diva-gis. org.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Google Scholar 

  • Jama, B., & Zeila, A. (2005). Agroforestry in the drylands of eastern Africa: a call to action. ICRAF Working Paper Nairobi: World Agroforestry Centre.

  • Jeschke, J. M., Bacher, S., Blackburn, T. M., Dick, J. T., Essl, F., Evans, T., et al. (2014). Defining the impact of non-native species. Conservation Biology, 28(5), 1188–1194.

    Google Scholar 

  • Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P., et al. (2009). Technical support to EU strategy on invasive alien species (IAS). Institute for European Environmental Policy (IEEP), Brussels, 44.

  • Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H., & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379. https://doi.org/10.1111/ddi.12096.

    Google Scholar 

  • Kumar, S., Neven, L. G., Zhu, H., & Zhang, R. (2015). Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108(4), 1708–1719.

    Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.

    Google Scholar 

  • Maiorano, L., Falcucci, A., Zimmermann, N. E., Psomas, A., Pottier, J., Baisero, D., Rondinini, C., Guisan, A., & Boitani, L. (2011). The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2681–2692.

    Google Scholar 

  • McCary, M. A., Mores, R., Farfan, M. A., & Wise, D. H. (2016). Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecology Letters, 19(3), 328–335.

    Google Scholar 

  • McNeely, J. A. (2001). Global strategy on invasive alien species: IUCN.

  • Mwangi, E., & Swallow, B. (2008). Prosopis juliflora invasion and rural livelihoods in the Lake Baringo area of Kenya. Conservation and Society, 6(2), 130–140.

    Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 317–335.

    Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Google Scholar 

  • Pasiecznik, N. M., Harris, P. J. C., & Smith, S. J. (2004). Identifying tropical prosopis species: a field guide. Coventry, UK: International Research Department, HDRA.

  • Pejchar, L., & Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24(9), 497–504.

    Google Scholar 

  • Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 1196624.

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

    Google Scholar 

  • Pyšek, P., Sádlo, J., Mandák, B., & Jarošík, V. (2003). Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia, 135(1), 122–130.

    Google Scholar 

  • Qian, H., & Ricklefs, R. E. (2006). The role of exotic species in homogenizing the North American flora. Ecology Letters, 9(12), 1293–1298.

    Google Scholar 

  • Rejmánek, M. (2000). Invasive plants: approaches and predictions. Austral Ecology, 25, 497–506.

    Google Scholar 

  • Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77(6), 1655–1661.

    Google Scholar 

  • Rejmanek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J., & Grotkopp, E. (2005). Ecology of invasive plants: state of the art. In H. A. Mooney, R. Mack, J. A. McNeely, L. E. Neville, P. J. Schei, & J. K. Waage (Eds.), Invasive alien species: a new synthesis (pp. 104–161): Island Press, Washington, DC.

  • Scheffers, B. R., De Meester, L., Bridge, T. C., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., et al. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671.

    Google Scholar 

  • Schirmel, J., Bundschuh, M., Entling, M. H., Kowarik, I., & Buchholz, S. (2016). Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. Global Change Biology, 22(2), 594–603.

    Google Scholar 

  • Scott, J., & Panetta, F. (1993). Predicting the Australian weed status of southern African plants. Journal of Biogeography, 20, 87–93.

    Google Scholar 

  • Shabani, F., & Kumar, L. (2015). Should species distribution models use only native or exotic records of existence or both? Ecological Informatics, 29, 57–65.

    Google Scholar 

  • Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution, 6(16), 5973–5986.

    Google Scholar 

  • Sharma, R., & Dakshini, K. (1998). Integration of plant and soil characteristics and the ecological success of two shape Prosopis species. Plant Ecology, 139(1), 63–69.

    Google Scholar 

  • Shiferaw, H., Teketay, D., Nemomissa, S., & Assefa, F. (2004). Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. At middle awash Rift Valley area, North-Eastern Ethiopia. Journal of Arid Environments, 58(2), 135–154.

    Google Scholar 

  • Thuiller, W., Richardson, D. M., PYŠEK, P., Midgley, G. F., Hughes, G. O., & Rouget, M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12), 2234–2250.

    Google Scholar 

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1–2), 5–31.

    Google Scholar 

  • VanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. J., & Reside, A. E. (2013). Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3(3), 239–243.

    Google Scholar 

  • Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology letters, 14(7), 702–708.

    Google Scholar 

  • Wakie, T. T., Evangelista, P. H., Jarnevich, C. S., & Laituri, M. (2014). Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia. PLoS One, 9(11), e112854.

    Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

    CAS  Google Scholar 

  • Wang, W., Tang, X., Zhu, Q., Pan, K., Hu, Q., He, M., & Li, J. (2014). Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PLoS One, 9(11), e111587.

    Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611.

    Google Scholar 

  • Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., & Kimoto, M. (2010). Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. Journal of Climate, 23(23), 6312–6335.

    Google Scholar 

  • Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324.

    Google Scholar 

  • Wisz, M. S., Hijmans, R., Li, J., Peterson, A. T., Graham, C., Guisan, A., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773.

    Google Scholar 

  • Yousefi, M., Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., & Kaboli, M. (2015). Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS One, 10(9), e0138087.

    Google Scholar 

  • Zavaleta, E. S., Hobbs, R. J., & Mooney, H. A. (2001). Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution, 16(8), 454–459.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the provincial bureau of the Department of Environment in Khuzestan, Boushehr, Hoemozgan, and Sistan and Balouchetan provinces for their logistic assistance. Our special thanks go to the staff and game gourds for their help during the field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Khorasani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heshmati, I., Khorasani, N., Shams-Esfandabad, B. et al. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment. Environ Monit Assess 191, 72 (2019). https://doi.org/10.1007/s10661-018-7154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7154-9

Keywords

Navigation