Skip to main content

Advertisement

Log in

Spatial gradient and quantitative attribution of karst soil erosion in Southwest China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil erosion estimation has attracted considerable attention from the scientific community and governments because of its importance to sustainable regional development. In karst areas, the heterogeneous environment and rocky desertification create difficulties in determining the influencing factors and spatial patterns of soil erosion. A quantitative analysis of karst soil erosion distribution was conducted by applying the revised soil loss equation model and the geographical detector method of attribution identification, which was based on spatial variance analysis. The results show that soil erosion was most severe in areas with an elevation of 1200–1800 m and intense anthropogenic activity. When the vegetation coverage was below 0.5–0.6, soil erosion showed characteristics of a source-limited regime and increased with the increasing vegetation coverage. When the vegetation coverage was higher than 0.5–0.6, soil erosion followed a transport-limited regime and decreased with the increasing vegetation coverage. The factor detector showed land use to be the dominant factor, explaining 51% of soil erosion distribution. Among various land use types, dry land had the greatest vulnerability to soil erosion. Slope served as a controlling factor at large scales, especially when combined with annual precipitation exceeding 1500 mm, and in dry and grassland areas. From the attribution analysis of multiple factors, the combination of land use and slope was the controlling interaction factor explaining 68% of soil erosion distribution. The methods and results of this research could serve as scientific references for decision makers and researchers exploring the characteristics of soil erosion to develop effective measures for its control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnoldus, H. M. J., Boodt, M. D., & Gabriels, D. (1980). An approximation of the rainfall factor in the universal soil loss equation. In M. De Boodt & D. Gabriels (Eds.), Assessment of erosion (pp. 127–132). Chichester: Wiley.

    Google Scholar 

  • Cai, C. F., Ding, S. W., Shi, Z. H., Huang, L., & Zhang, G. Y. (2000). Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. Journal of Soil and Water Conservation, 14(2), 19–24.

    CAS  Google Scholar 

  • Chen, H. S., Yang, J., Fu, W., He, F., & Wang, K. L. (2012). Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi. Transactions of the Chinese Society of Agricultural Engineering, 28(16), 121–126.

    Google Scholar 

  • Dai, Q. H., Peng, X. D., Yang, Z., & Zhao, L. S. (2017a). Runoff and erosion processes on bare slopes in the karst rocky desertification area. Catena, 152, 218–226.

    Article  Google Scholar 

  • Dai, Q. H., Peng, X. D., Zhao, L. S., Shao, H. B., & Yang, Z. (2017b). Effects of underground pore fissures on soil erosion and sediment yield on karst slopes. Land Degradation & Development, 28(7), 1922–1932. https://doi.org/10.1002/ldr.2711.

    Article  Google Scholar 

  • Fang, G. L., Xiang, B., Zhao, W., Xie, Q., Diao, Z. Y., & Chi, W. F. (2015). Study on soil erosion in LaSa River basin based on GIS and RUSLE. Journal of Soil and Water Conservation, 29(3), 6–12.

    Google Scholar 

  • Febles-Gonzalez, J. M., Vega-Carreno, M. B., Tolon-Becerra, A., & Lastra-Bravo, X. (2012). Assessment of soil erosion in karst regions of Havana, Cuba. Land Degradation & Development, 23(5), 465–474. https://doi.org/10.1002/ldr.1089.

    Article  Google Scholar 

  • Feng, T., Chen, H. S., Polyakov, V. O., Wang, K. L., Zhang, X. B., & Zhang, W. (2016). Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: comparison of the RUSLE model with 137Cs measurements. Geomorphology, 253, 217–224. https://doi.org/10.1016/j.geomorph.2015.10.013.

    Article  Google Scholar 

  • Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck, H., et al. (2010). Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degradation & Development, 16(1), 73–85.

    Article  Google Scholar 

  • Fu, B. J., Liu, Y., Lu, Y. H., He, C. S., Zeng, Y., & Wu, B. F. (2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4), 284–293. https://doi.org/10.1016/j.ecocom.2011.07.003.

    Article  Google Scholar 

  • Fu, W., Huang, M. B., Gallichand, J., & Shao, M. G. (2012). Optimization of plant coverage in relation to water balance in the Loess Plateau of China. Geoderma, 173-174, 134–144. https://doi.org/10.1016/j.geoderma.2011.12.016.

    Article  Google Scholar 

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007.

    Article  Google Scholar 

  • Hu, Y. F., Tian, G. H., Mayer, A. L., & He, R. Z. (2015). Risk assessment of soil erosion by application of remote sensing and GIS in Yanshan Reservoir catchment, China. Natural Hazards, 79(1), 277–289. https://doi.org/10.1007/s11069-015-1841-4.

    Article  Google Scholar 

  • Kheir, R. B., Abdallah, C., & Khawlie, A. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Engineering Geology, 99(3–4), 239–254. https://doi.org/10.1016/j.enggeo.2007.11.012.

    Article  Google Scholar 

  • Kim, J., Ivanov, V. Y., & Fatichi, S. (2016). Environmental stochasticity controls soil erosion variability. Scientific Reports, 6. https://doi.org/10.1038/srep22065.

  • Kong, Y. P., Zhang, K. L., & Cao, L. X. (2008). Appraise slope length factors in soil erosion study. Research of Soil and Water Conservation, 15(4), 43–47 52.

    Google Scholar 

  • Li, Y. B., Bai, X. Y., Zhou, G. F., LAN, A. J., Long, J., AN, Y. L., et al. (2006). The relationship of land use with karst rocky desertification in a typical karst area, China. Acta Geographica Sinica, 61(6), 624–632.

    Google Scholar 

  • Li, Y. B., Luo, G. J., Bai, X. Y., Wang, Y. Y., Wang, S. J., Xie, J., et al. (2014). The correlations among arable land, settlement and karst rocky desertification-cases study based on typical peak-cluster depression. Acta Ecologica Sinica, 34(9), 2195–2207.

    Google Scholar 

  • Liu, Z. H. (2000). Field experimental research on the corrosion kinetics of limestone and dolomite in allogenic water—case from Yaoshan Mt, Guilin. Carsologica Sinica, 19(1), 1–4.

    Google Scholar 

  • Long, T. W., Hunt, C. O., & Taylor, D. (2016). Radiocarbon anomalies suggest late onset of agricultural intensification in the catchment of the southern part of the Yangtze Delta, China. Catena, 147, 586–594. https://doi.org/10.1016/j.catena.2016.08.017.

    Article  Google Scholar 

  • Mandal, S., Srivastav, R. K., & Simonovic, S. P. (2016). Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. Journal of Hydrology, 538, 49–62. https://doi.org/10.1016/j.jhydrol.2016.04.009.

    Article  Google Scholar 

  • Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188(4). https://doi.org/10.1007/s10661-016-5218-2.

  • McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1987). Revised slope steepness factor for the universal soil loss equation. Transactions of the Asae, 30(5), 1387–1396.

    Article  Google Scholar 

  • McCool, D. K., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1989). Revised slope length factor for the universal soil loss equation. Transactions of the Asae, 32(5), 1571–1576.

    Article  Google Scholar 

  • Miller, J. D., Nyhan, J. W., & Yool, S. R. (2003). Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the revised universal soil loss equation. International Journal of Wildland Fire, 12(1), 85–100. https://doi.org/10.1071/wf02017.

    Article  Google Scholar 

  • Parise, M., De Waele, J., & Gutierrez, F. (2008). Current perspectives on the environmental impacts and hazards in karst. Environmental Geology, 58(2), 235–237. https://doi.org/10.1007/s00254-008-1608-2.

    Article  Google Scholar 

  • Peng, T., & Wang, S. J. (2012). Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena, 90(1), 53–62.

    Article  Google Scholar 

  • Pope, I. C., & Odhiambo, B. K. (2014). Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA. Environmental Monitoring and Assessment, 186(3), 1719–1733. https://doi.org/10.1007/s10661-013-3488-5.

    Article  CAS  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE) (agriculture handbook). Washington, DC: USDA.

    Google Scholar 

  • Sun, W. Y., Shao, Q. Q., Liu, J. Y., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, 151–163.

    Article  Google Scholar 

  • Wang, W. Z., & Jiao, J. Y. (1995). Study on rainfall erosivity in China (I). Journal of Soil and Water Conservation, 9(4), 5–18.

  • Wang, J., Cai, X. F., Lei, L., & Zhang, H. (2010a). Laboratory simulation on soil erosion under different bedrock outcrop rate in southwest karst area, China. Carsologica Sinica, 29(1), 1–5.

    Google Scholar 

  • Wang, J. F., Li, X. H., Christakos, G., Liao, Y. L., Zhang, T., Gu, X., & Zheng, X. Y. (2010b). Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 24(1), 107–127. https://doi.org/10.1080/13658810802443457.

    Article  CAS  Google Scholar 

  • Wang, Y., Cai, Y. L., & Pan, M. (2013). Analysis on the relationship between soil erosion and land use in Wujiang River basin in Guizhou Province. Research of Soil and Water Conservation, 20(3), 11–18.

    Google Scholar 

  • Wang, W. J., Deng, R. X., & Zhang, S. W. (2014). Preliminary research on risk evaluation of gully erosion in typical black soil area of Northeast China. Journal of Natural Resources, 29(12), 2058–2067.

    Google Scholar 

  • Wang, Y., Zhang, J. H., Zhang, Z. H., & Jia, L. Z. (2016). Impact of tillage erosion on water erosion in a hilly landscape. Sci Total Environ, 551-552, 522–532. https://doi.org/10.1016/j.scitotenv.2016.02.045.

    Article  CAS  Google Scholar 

  • Williams, J. R., Jones, C. A., Kiniry, J. R., & Spanel, D. A. (1989). The EPIC crop growth-model. Transactions of the Asae, 32(2), 497–511.

    Article  Google Scholar 

  • Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (agriculture handbook). Washington, DC: USDA.

    Google Scholar 

  • Wu, L., Liu, X., & Ma, X. Y. (2016). Spatiotemporal distribution of rainfall erosivity in the Yanhe River watershed of hilly and gully region, Chinese Loess Plateau. Environmental Earth Sciences, 75(4). https://doi.org/10.1007/s12665-015-5136-6.

  • Xiong, K. N., Li, J., & Long, M. Z. (2012). Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geographica Sinica, 67(7), 878–888.

    Google Scholar 

  • Xu, Y. Q., & Shao, X. M. (2006). Estimation of soil erosion supported by GIS and RUSLE: a case study of Maotiaohe Watershed, Guizhou Province. Journal of Beijing Forestry University, 28(4), 67–71.

    Google Scholar 

  • Xu, Y. Q., Shao, X. M., Kong, X. B., Peng, J., & Cai, Y. L. (2008). Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment, 141(1–3), 275–286. https://doi.org/10.1007/s10661-007-9894-9.

    Article  Google Scholar 

  • Xu, Y. Q., Huang, J., Feng, Y., & Zhou, D. (2010). Soil erosion economic loss under different land use structures: a case study of Maotiao River Watershed, Guizhou Province. Progress in Geography, 29(11), 1451–1456.

    Google Scholar 

  • Xu, Q. Y., Huang, M., Liu, H. S., & Yan, H. M. (2011). Integrated assessment of eco-environmental vulnerability in Pearl River Delta based on RS and GIS. The Journal of Applied Ecology, 22(11), 2987–2995.

    CAS  Google Scholar 

  • Yu, H. Q., Li, Y., Zhou, N., Chappell, A., Li, X. Y., & Poesen, J. (2016). Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain. Journal of Integrative Agriculture, 15(7), 1612–1624. https://doi.org/10.1016/s2095-3119(15)61268-0.

    Article  CAS  Google Scholar 

  • Zeng, L. Y., Wang, M. H., & Li, C. M. (2011). Study on soil erosion and its spatio-temporal change at Hongfeng Lake watershed based on RUSLE model. Hydrogeology & Engineering Geology, 32(2), 113–118.

    Google Scholar 

  • Zeng, C., Wang, S. J., Bai, X. Y., Li, Y. B., Tian, Y. C., Li, Y., et al. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 1–26.

    Article  Google Scholar 

  • Zha, L. S., Deng, G. H., & Gu, J. C. (2015). Dynamic changes of soil erosion in the Chaohu Watershed from 1992 to 2013. Acta Geographica Sinica, 70(11), 1708–1719.

    Google Scholar 

  • Zhang, H. M., Yang, Q. K., Li, R., Liu, Q. R., Moore, D., He, P., et al. (2013a). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 52, 177–188. https://doi.org/10.1016/j.cageo.2012.09.027.

    Article  Google Scholar 

  • Zhang, X. B., Wang, S. J., Bai, X. Y., Chen, W. Y., & Zhang, S. Y. (2013b). Relationships between the spatial distribution of karst land desertification and geomorphology, lithology, precipitation, and population density in Guizhou Province. Earth and Environment, 41(1), 1–6.

    Google Scholar 

  • Zhao, Y., & Li, X. (2016). Spatial correlation between type of mountain area and land use degree in Guizhou Province, China. Sustainability, 8(9). https://doi.org/10.3390/su8090849.

  • Zhao, Y. Y., Zhou, Y. C., & Duan, X. (2007). Anti-erodibility and anti-scourability of different lithological soils in karst area of Central Guizhou Province. Journal of Anhui Agricultural Sciences, 35(29), 9311–9313 9317.

    Google Scholar 

Download references

Funding

This research was financially supported by the National Basic Research Program of China (Grant No. 2015CB452702), the National Natural Science Foundation of China (Grant Nos. 41671098 and 41530749), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDA20020202 and XDA19040304)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbo Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wang, H. & Zuo, L. Spatial gradient and quantitative attribution of karst soil erosion in Southwest China. Environ Monit Assess 190, 730 (2018). https://doi.org/10.1007/s10661-018-7116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7116-2

Keywords

Navigation