Skip to main content
Log in

Developmental and reproductive effects of tamoxifen on Daphnia magna

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Although medicines are less toxic than other toxicants, increased production and usage of pharmaceuticals have led to many concerns regarding their toxic effects on human and non-target organisms. Additionally, reproductive toxicity after long-term exposure is difficult to anticipate. Tamoxifen (TAM), a selective estrogen receptor modulator, has been widely used as an anticancer drug for mammalian breast and endometrial cancers. With increased TAM usage, it has frequently been reported that TAM is a potential endocrine disruptor capable of interfering with reproduction in non-target organisms. However, the mode of action of TAM in the endocrine system is unknown. In this study, we performed a 21-day chronic toxicity test using the crustacean Daphnia magna and investigated the transcriptional modulation of major genes related to the endocrine system, molting, development, and reproduction (i.e., Dm-vtg2, vmo1, cyp314, usp, and ecrb) after TAM exposure for 3, 6, 12, and 24 h. Our results showed a concentration-dependent decrease in the total number of offspring per individual, except for the concentration 25 μg/L; additionally, the expression of oogenesis-related genes was induced early but was later inhibited by TAM exposure. Additionally, molting-related genes were also downregulated in a time-dependent manner. Our findings suggested that TAM regulates reproduction by interfering with the molecular mechanisms involved in oogenesis and molting. This study supports the hypothesis that D. magna are a useful model to rapidly evaluate the reproductive effects of pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bolon, B., Bucci, T. J., Warbritton, A. R., Chen, J. J., Mattison, D. R., & Heindel, J. J. (1997). Differential follicle counts as a screen for chemically induced ovarian toxicity in mice: results from continuous breeding bioassays. Fundamental and Applied Toxicology: Official Journal of the Society of Toxicology, 39(1), 1–10.

    Article  CAS  Google Scholar 

  • Borgatta, M., Waridel, P., Decosterd, L. A., Buclin, T., & Chèvre, N. (2016). Multigenerational effects of the anticancer drug tamoxifen and its metabolite 4-hydroxy-tamoxifen on Daphnia pulex. The Science of the Total Environment, 545–546, 21–29.

    Article  Google Scholar 

  • Brown, M. R., Sieglaff, D. H., & Rees, H. H. (2009). Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. Annual Review of Entomology, 54, 105–125.

    Article  CAS  Google Scholar 

  • Gilbert, L. I., Rybczynski, R., & Warren, J. T. (2002). Control and biochemical nature of the ecdysteroidogenic pathway. Annual Review of Entomology, 47, 883–916.

    Article  CAS  Google Scholar 

  • Gupta, R. C. (2018). Veterinary toxicology basic and clinical principles. Academic Press.

  • Hann, B. J. (1986). Revision of the genus Daphniopsis Sars, 1903 (Cladocera: Daphniidae) and a description of Daphniopsis chilensis, new species, from South America. Journal of Crustacean Biology, 6(2), 246–263.

    Article  Google Scholar 

  • Hannas, B. R., Wang, Y. H., Thomson, S., Kwon, G., Li, H., & Leblanc, G. A. (2011). Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). Aquatic Toxicology, 101(2), 351–357.

    Article  CAS  Google Scholar 

  • Heckmann, L. H., Connon, R., Hutchinson, T. H., Maund, S. J., Sibly, R. M., & Callaghan, A. (2006). Expression of target and reference genes in Daphnia magna exposed to ibuprofen. BMC Genomics, 7, 175.

    Article  Google Scholar 

  • Heckmann, L. H., Sibly, R. M., Connon, R., Hooper, H. L., Hutchinson, T. H., Maund, S. J., Hill, C. J., Bouetard, A., & Callaghan, A. (2008). Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9(2), R40.

    Article  Google Scholar 

  • Houde, M., Douville, M., Gagnon, P., Sproull, J., & Cloutier, F. (2015). Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters. Ecotoxicology and Environmental Safety, 116, 10–18.

    Article  CAS  Google Scholar 

  • Hutchinson, T. H. (2002). Reproductive and developmental effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicology Letters, 131(1–2), 75–81.

    Article  CAS  Google Scholar 

  • Jagt, K. E. V. D., Munn, S., Torslov, J., & De Bruijn, J. (2004). Alternative approaches can reduce the use of test animals under REACH. EC Publishing PhysicsWeb http://publications.jrc.ec.europa.eu/repository/handle/JRC29111.

  • Jordan, V. C., Dix, C. J., Rowsby, L., & Prestwich, G. (1977). Studies on the mechanism of action of the nonsteroidal antioestrogen tamoxifen (ICI 46,474) in the rat. Molecular and Cellular Endocrinology, 7(2), 177–192.

    Article  CAS  Google Scholar 

  • Kato, Y., Kobayashi, K., Oda, S., Tatarazako, N., Watanabe, H., & Iguchi, T. (2007). Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. The Journal of Endocrinology, 193(1), 183–194.

    Article  CAS  Google Scholar 

  • Marie, P., Labas, V., Brionne, A., Harichaux, G., Hennequet-Antier, C., Rodriguez-Navarro, A. B., Nys, Y., & Gautron, J. (2015). Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification. Data in Brief, 7(4), 430–436.

    Article  Google Scholar 

  • Martin, M. T., Knudsen, T. B., Reif, D. M., Houck, K. A., Judson, R. S., Kavlock, R. J., & Dix, D. J. (2011). Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biology of Reproduction, 85(2), 327–339.

    Article  CAS  Google Scholar 

  • Muramatsu, M., & Inoue, S. (2000). Estrogen receptors: how do they control reproductive and nonreproductive functions? Biochemical and Biophysical Research Communications, 270(1), 1–10.

    Article  CAS  Google Scholar 

  • Namiki, T., Niwa, R., Sakudoh, T., Shirai, K., Takeuchi, H., & Kataoka, H. (2005). Cytochrome P450 CYP307A1/spook: a regulator for ecdysone synthesis in insects. Biochemical and Biophysical Research Communications, 337(1), 367–374.

    Article  CAS  Google Scholar 

  • Orias, F., Bony, S., Devaux, A., Durrieu, C., Aubrat, M., Hombert, T., Wigh, A., & Perrodin, Y. (2015). Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems. Chemosphere, 128, 79–84.

    Article  CAS  Google Scholar 

  • Pagano, G., de Biase, A., Deeva, I. B., Degan, P., Doronin, Y. K., Iaccarino, M., Oral, R., Trieff, N. M., Warnau, M., & Korkina, L. G. (2001). The role of oxidative stress in developmental and reproductive toxicity of tamoxifen. Life Sciences, 68(15), 1735–1749.

    Article  CAS  Google Scholar 

  • Prot, J. M., & Leclerc, E. (2012). The current status of alternatives to animal testing and predictive toxicology methods using liver microfluidic biochips. Annals of Biomedical Engineering, 40(6), 1228–1243.

    Article  Google Scholar 

  • Rewitz, K. F., & Gilbert, L. I. (2008). Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evolutionary Biology, 25(8), 60.

    Article  Google Scholar 

  • Sannerstedt, R., Lundborg, P., Danielsson, B. R., Kihlström, I., Alván, G., Prame, B., & Ridley, E. (1996). Drugs during pregnancy. Drug Safety, 14(2), 69–77.

    Article  CAS  Google Scholar 

  • Seiler, A., Visan, A., Buesen, R., Genschow, E., & Spielmann, H. (2004). Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reproductive Toxicology, 18(2), 231–240.

    Article  CAS  Google Scholar 

  • Shibutani, S., Suzuki, N., Laxmi, Y. R. S., Schild, L. J., Divi, R. L., Grollman, A. P., & Poirier, M. C. (2003). Identification of Tamoxifen-DNA adducts in monkeys treated with Tamoxifen. Cancer Research, 63(15), 4402–4406.

    CAS  Google Scholar 

  • Smirnov, N. N. (2014). The physiology of the Cladocera. Amsterdam: Academic Press.

    Google Scholar 

  • US EPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Cincinnati: Environmental monitoring systems laboratory.

  • Xia, L., Zheng, L., & Zhou, J. L. (2015). Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio). Journal of Applied Toxicology, 36(6), 853–862.

    Article  Google Scholar 

  • Yang, G., Nowsheen, S., Aziz, K., & Georgakilas, A. G. (2013). Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacology & Therapeutics, 139(3), 392–404.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Korea Ministry of Environment (MOE) as Technology Program for establishing biocide safety management (RE20184085) and a grant from the Korea Institute of Toxicology (KIT, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M., Lee, S., Yoon, S. et al. Developmental and reproductive effects of tamoxifen on Daphnia magna. Environ Monit Assess 190, 677 (2018). https://doi.org/10.1007/s10661-018-7002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7002-y

Keywords

Navigation