Skip to main content

Advertisement

Log in

Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Urbanization and climate change are causing numerous side effects on groundwater resources. In this study, an integrated modeling approach by linking soil and water application tool (SWAT), modular finite difference groundwater flow (MODFLOW), and three-dimensional variable-density groundwater flow coupled with multi-species solute and heat transport (SEAWAT) models were used to exhibit responses of groundwater systems, in terms of flow and salt concentrations to current and future climatic and anthropogenic changes. Future climate scenarios for periods of 2010–2040 were generated from the Canadian Global Coupled Model (CGCM) for scenarios A1B, B1, and A2 which was downscaled by the Long Ashton Research Station weather generator (LARS-WG) providing precipitation and temperature patterns for the period 2018–2040. The GCM’s outputs were applied to SWAT model to estimate recharge rate for the ten scenarios designed to assess the sensitivity of the aquifer to urbanization and climate change. The estimated recharge rate from SWAT was utilized as an input in numerical groundwater model to evaluate saltwater intrusion (SWI), changes in freshwater storage within the aquifer system, and changes in groundwater level. Based on the results of each scenario’s simulation, increase of pumping rate yield by future population growth will have more adverse effects on the unconfined aquifer. The derived information from this study can be used to improve future works by developing a better understanding of the managed and unmanaged response of freshwater storage and unconfined groundwater systems to climate change and anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10).

  • Alaviani, F., Sedghi, H., Asghari Moghaddam, A., & Babazadeh, H. (2018). Adopting GMS–PSO model to reduce groundwater withdrawal by integrated water resources management. International Journal of Environmental Research. https://doi.org/10.1007/s41742-018-0115-x.

    Article  Google Scholar 

  • Arnold, J. G., Williams, J. R., Srinivasan, R., & King, K. W. (1996). The soil and water assessment tool (SWAT) user’s manual. Temple: USDA, Agriculture Research Service, Grassland, Soil and Water Research Laboratory.

    Google Scholar 

  • Chang, S. W., & Clement, T. P. (2012). Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems. Water Resources Research, 48(9).

  • Chang, S. W., & Clement, T. P. (2013). Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge. Journal of Contaminant Hydrology, 147, 14–24.

    Article  CAS  Google Scholar 

  • Chang, S. W., Clement, T. P., Simpson, M. J., & Lee, K. K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10), 1283–1291.

    Article  Google Scholar 

  • Chang, S. W., Nemec, K., Kalin, L., & Clement, T. P. (2016). Impacts of climate change and urbanization on groundwater resources in a barrier island. Journal of Environmental Engineering, 142(12), D4016001.

    Article  Google Scholar 

  • Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., & Safarov, E. S. (2017). Long-term Caspian Sea level change. Geophysical Research Letters, 44(13), 6993–7001.

    Article  Google Scholar 

  • Dams, J., Woldeamlak, S. T., & Batelaan, O. (2008). Predicting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrology and Earth System Sciences, 12(6), 1369–1385.

    Article  Google Scholar 

  • Daryaabadi, S. J. (2010). Managing coastal area of Caspian Sea. Human Geography., 2(1), 111–124 (In Persian).

    Google Scholar 

  • Dausman, A., & Langevin, C. D. (2005). Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida. US Department of the eInterior, US Geological Survey.

  • Dokou, Z., & Karatzas, G. P. (2012). Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrological Sciences Journal, 57(5), 985–999.

    Article  CAS  Google Scholar 

  • Foster, S. B., & Allen, D. M. (2015). Groundwater—surface water interactions in a mountain-to-coast watershed: effects of climate change and human stressors. Advances in Meteorology, 2015, 1–22. https://doi.org/10.1155/2015/861805.

    Article  Google Scholar 

  • Guo, W., & Langevin, C. D. (2002). User’s guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow (No. 06-A7).

  • Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). The US Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, open-file report 00-92. Boulder: United States Geological Survey 121p.

    Google Scholar 

  • Havril, T., Tóth, Á., Molson, J. W., Galsa, A., & Mádl-Szőnyi, J. (2017). Impacts of predicted climate change on groundwater flow systems: can wetlands disappear due to recharge reduction? Journal of Hydrology, 563, 1169–1180.

    Article  Google Scholar 

  • Kamali, A., & Niksokhan, M. H. (2017). Multi-objective optimization for sustainable groundwater management by developing of coupled quantity-quality simulation-optimization model. Journal of Hydroinformatics, 19(6), 973–992.

    Article  Google Scholar 

  • Langevin, C. D., & Panday, S. (2012). Future of groundwater modeling. Groundwater, 50(3), 334–339.

    Article  Google Scholar 

  • Latinopoulos, P. (2003). Development of a water recourses management plan for water supply and irrigation in the Municipality of Moudania. Final Report, Research Project, Department of Civil Engineering, Aristotle University of Thessaloniki (in Greek).

  • Lebedev, S. A., & Kostianoy, A. G. (2005). Satellite altimetry of the Caspian Sea. Sea, Moscow, 366.

  • Masterson, J. P., & Garabedian, S. P. (2007). Effects of sea-level rise on ground water flow in a coastal aquifer system. Groundwater, 45(2), 209–217.

    Article  CAS  Google Scholar 

  • Moridi, A., Majdzadeh Tabatabaie, M. R., & Esmaeelzade, S. (2018). Holistic approach to sustainable groundwater management in semi-arid regions. International Journal of Environmental Research, 12(3), 347–355.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

  • Oude Essink, G. H. P., Van Baaren, E. S., & De Louw, P. G. (2010). Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resources Research, 46(10).

  • Park, S. U., Kim, J. M., Yum, B. W., & Yeh, G. T. (2011). Three-dimensional numerical simulation of saltwater extraction schemes to mitigate seawater intrusion due to groundwater pumping in a coastal aquifer system. Journal of Hydrologic Engineering, 17(1), 10–22.

    Article  Google Scholar 

  • Post, V. E., & Werner, A. D. (2017). Coastal aquifers: scientific advances in the face of global environmental challenges. Journal of Hydrology, 551, 1–3.

    Article  Google Scholar 

  • Praveena, S. M., & Aris, A. Z. (2010). Groundwater resources assessment using numerical model: a case study in low-lying coastal area. International Journal of Environmental Science & Technology, 7(1), 135–146.

    Article  CAS  Google Scholar 

  • Ranjan, P., Kazama, S., & Sawamoto, M. (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change, 16(4), 388–399.

    Article  Google Scholar 

  • Rozell, D. J., & Wong, T. F. (2010). Effects of climate change on groundwater resources at Shelter Island, New York State, USA. Hydrogeology Journal, 18(7), 1657–1665.

    Article  CAS  Google Scholar 

  • Sherif, M. M., & Singh, V. P. (1999). Effect of climate change on sea water intrusion in coastal aquifers. Hydrological Processes, 13, 1277–1287.

    Article  Google Scholar 

  • Sulzbacher, H., Siemon, B., Grinat, M., Igel, J., Burschil, T., Günther, T., & Hinsby, K. (2012). Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrology and Earth System Sciences, 16(10), 3621–3643.

    Article  Google Scholar 

  • Wang, R., & Kalin, L. (2011). Modelling effects of land use/cover changes under limited data. Ecohydrology, 4(2), 265–276.

    Article  Google Scholar 

  • Webb, M. D., & Howard, K. W. (2011). Modeling the transient response of saline intrusion to rising sea-levels. Groundwater, 49(4), 560–569.

    Article  CAS  Google Scholar 

  • Werner, A. D., & Simmons, C. T. (2009). Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater, 47(2), 197–204.

    Article  CAS  Google Scholar 

  • Yu, W. (2010). Implications of climate change for fresh groundwater resources in coastal aquifers in Bangladesh. Washington, DC: World Bank.

    Google Scholar 

  • Zheng, C., & Wang, P. P. (1999). MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. Alabama University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Niksokhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarpour, S., Niksokhan, M.H. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Environ Monit Assess 190, 579 (2018). https://doi.org/10.1007/s10661-018-6953-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6953-3

Keywords

Navigation