Skip to main content
Log in

Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrialization and extraction of natural resources have resulted in large-scale environmental contamination and pollution. We have collected the soil samples from five different industrial areas of Mettur (Chemplast Sanmar Limited, SIDCO-1, SIDCO-2, SIDCO-3, thermal power plant), Salem district, Tamil Nadu, India, and estimated the physical properties (pH, EC, and alkalinity), chemical properties (major and minor elements), and heavy metal analysis. Thermal power plant soil sample showed higher pH 5.01, EC 29.33 μmhos/cm compared with rest of the samples. Acidic nature of the soil samples near thermal power plant was due to the effect of ash disposal. The high electrical conductivity is due to the disposal of soluble electrolytes and deposition of dust particles released from Thermal Power Plant. Alkalinity of the SIDCO-2 soil (410 ppm) was higher than that of rest of the soil samples. Soil samples show higher concentrations of chloride (10,400 ppm) from thermal power plant when compared with soil sample collected from all 15 sample areas. It was found that heavy metal concentrations lie in the following ranges: Cu (3.780–86.360 ppm) > Pb (0.018–1.710 ppm) > As (0.053–0.342 ppm) in Mettur area. The maximum concentration of copper (Cu) found in SIDCO-1 (86.360 ppm) was due to electroplating industry, smelting and refining, mining, and biosolids. Maximum concentrations of arsenic (As) recorded (0.342 ppm) in thermal Power plant was due to ash disposal from the coal-fired thermal power plant. And maximum concentrations of lead (Pb) (1.710 ppm) in Chemplast area are due to the effluent discharge of manufacturing units like PVC resins, chlorochemicals, and piping systems in Chemplast which are main source of heavy metal pollutants. Therefore, major mining and smelting of metalliferous ores, burning of leaded gasoline, municipal sewage, industrial wastes enriched with Pb, and paints, which exceeded WHO (2011) and BIS (2003) recommended standard for lead (0.090 ppm) and arsenic (0.010 ppm). The geo-accumulation index (Igeo) study indicates that there is no significant contamination with lead and arsenic but there is a moderate contamination with copper (86.360 ppm). According to the calculated values of PLI, area 1 (0.061) has been contaminated high compared with other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adelekan, B. A., & Abegunde, K. D. (2011). Heavy metals contamination of soil and groundwater at automobile mechanic villages in Ibadan, Nigeria. International Journal of the Physical Sciences, 6(5), 1045–1058.

    CAS  Google Scholar 

  • Ahmad, M. A., Guar, R., & Gupta, M. (2012). Comparative biochemical and RAPD analysis in two verities of rice (Oryza sativa) under arsenic stress by using various biomarkers. Journal of Hazardous Materials, 217–218, 141–148.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils (pp. 100–124). Glasgow: Blackie and Son Ltd..

    Google Scholar 

  • Bahemuka, T. E., & Mubofu, E. B. (1999). Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi Rivers in Dares Salaam, Tanzania. Food Chemistry, 66, 63–66.

    Article  CAS  Google Scholar 

  • Baisberg-Pahlsson, A. M. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47(3–4), 287–319.

    Article  Google Scholar 

  • Baltensweiler, A, & Zimmermann S. (2010). Modeling soil acidity in Switzerland using spatial statistics tools. Proceedings of the ESRI international user conference (pp. 12–16).

  • de Vries, W., Romkens, P. F., & Schutze, G. (2007). Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Reviews of Environmental Contamination and Toxicology, 191, 91.

    Google Scholar 

  • Feng, X., Li, P., Qiu, G., Wang, S., Li, G., Shang, L., Meng, B., Jiang, H., Bai, W., & Li, Z. (2008). Human exposure to methylmercury through rice intake in mercury mining areas. Environmental Science and Technology, 42, 326–332.

    Article  CAS  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44, 249–253.

    CAS  Google Scholar 

  • Gisbert, C., Ros, R., de Haro, A., Walker, D. J., Pilar Bernal, M., Serrano, R., & Avino, J. N. (2003). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 3,303(2), 440–445.

    Article  CAS  Google Scholar 

  • Guo, G., Wu, F., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24(3), 410–418.

    Article  CAS  Google Scholar 

  • Guven, D. E., & Akinci, G. (2011). Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi University Journal of Science, 24(1), 29–34.

    Google Scholar 

  • Harter, T. (2003). Groundwater quality and groundwater pollution. UC Agriculture & Natural Resources Farm, https://doi.org/10.3733/ucanr.8084. Retrieved from https://escholarship.org/uc/item/0vw7400h.

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agro ecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140.

    Article  CAS  Google Scholar 

  • Holmes, P., James, K. A. F., & Levy, L. S. (2009). Is low-level environmental mercury exposure of concern to human health? Science of the Total Environment, 408, 171–182.

    Article  CAS  Google Scholar 

  • Jantschi, L., Loan Suciu, Cosma, C., Todica, M., & Bolboaca, S.D. (2008). Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania. Int. J. Mol. Sci, 9, 434–453.

    Article  Google Scholar 

  • Jayakumar, R., Dhanakumar, S., Kalaiselvi, K., & Palanivel, M. (2015). Multivariate statistical analysis of heavy metals and other hydro chemical haracteristics in industrially polluted groundwater resources of Mettur, India. Chemical Science Transactions, 4(3), 728–735.

    CAS  Google Scholar 

  • Kabir, E., Ray, S., Kim, K.-H., Yoon, H.-O., Jeon, E.-C., Kim, Y. S., Cho, Y.-S., Yun, S.-T., & Brown, R. J. C. (2012). Current status of trace metal pollution in soils affected by industrial activities. The Scientific World Journal, 916705. https://doi.org/10.1100/2012/916705.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    Article  CAS  Google Scholar 

  • Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G., & Li, X. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. Journal of Hazardous Materials, 186, 481–490.

    Article  CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology International Journal of Geosciences, 51(3), 409–420.

    Article  CAS  Google Scholar 

  • Mathew, M., Mohanraj, R., Azeez, P. A., & Pattabhi, S. (2003). Speciation of heavy metals in bed sediments of wetlands in urban Coimbatore, India. Bulletin of Environmental Contamination and Toxicology, 70, 800–808.

    Article  CAS  Google Scholar 

  • Mathiyazhagan, N., & Natarajan, D. (2011). Bioremediation on effluents from Magnesite and Bauxite mines using Thiobacillus Spp and Pseudomonas Spp. Journal of Bioremediation & Biodegradation, 2, 115.

    Article  CAS  Google Scholar 

  • Mathiyazhagan, N., & Natarajan, D. (2012). Physicochemical assessment of waste dumps of Magnesite and Bauxite Mine in summer and rainy season. International Journal of Environmental Sciences, 2(3), 2243–2252.

    CAS  Google Scholar 

  • Meagher, R. B., & Heaton, A. C. P. (2005). Strategic for the engineered phytoremediation of toxic element pollution: mercury and arsenic. Journal of Industrial Microbiology & Biotechnology, 32, 502–513.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Heavy metals in the sediment of the Rhine – Changes seity. Umschau in Wissenschaft und Technik, 79, 778–783.

    Google Scholar 

  • Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: stocktaking. Chemiker Zeitung, 105, 157–164.

    Google Scholar 

  • Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., Rafeeq, M., & Shaheen, Z. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. Journal of Pharmaceutical Sciences and Research, 7(3), 89–97.

    CAS  Google Scholar 

  • Nazzal, Y., Rosen, M. A., & Al-Rawabdeh, A. M. (2013). Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environmental Monitoring and Assessment, 185(2), 1847–1858.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1994). Arsenic in the Environment (pp. 439). Canada; John Wiley & Sons.

  • Nriagu, J. O., Jinabhai, C. C., Naidoo, R., & Coutsoudis, A. (1996). Atmospheric lead pollution in Kwazulu/Natal. Science of the Total Environment, 191, 69–76.

    Article  CAS  Google Scholar 

  • Ogeleka, D. F., Ugwueze, V. I., & Okieimen, F. E. (2016). Ecotoxicological assessment of cadmium and lead exposure to terrestrial sentinels - snails (Archachatina marginata). International Journal of Research in Chemistry and Environment, 6(4), 1–9.

    CAS  Google Scholar 

  • Ojha, P. K., & Chaudhary, N. K. (2017). Soil quality assessment posed by industrial effluents in Bansbari industrial area of Morang District, Nepal. Elixir Pollution, 106, 45906–45908.

    Google Scholar 

  • Olubunmi, F. E., & Olorunsola, O. E. (2010). Evaluation of the status of heavy metal pollution of sediment of Agbabu bitumen deposit area, Nigeria. European Journal of Scientific Research, 41(3), 373–382.

    Google Scholar 

  • Pantelica, A., Cercasov, A., Steinnes, E., Bode, P., & Wolterbeek, B. (2008). Investigation by INAA, XRF, ICPMS and PIXE of Air Pollution Levels at Galati (Siderurgical Site). Book of abstracts, 4th Nat. Conf. of Applied Physics (NCAP4), Galati, Romania.

  • Premkumar, L. (2007). Unfolding Disaster: A Study of Chemplast Sanmar’s Toxic Contamination in Mettur – Tamilnadu. https://www.scribd.com/document/126704364.

  • Salomons, W., & Forstner, U. (1984). Metals in the Hydrocycle. Berlin – Heidelberg - New York - Tokyo. Springer Verlag, 349 (149), 13: 267–267.

  • Schutze, G., de Vries, W., & Romkens, P. F. (2007). Critical soil concentration of cadmium, lead and mercury in view of health effects on humans and animals. Reviews of Environmental Contamination and Toxicology, 191, 91–130.

    Google Scholar 

  • Seaward, M. R. D., & Richardson, D. H. S. (1990). Atmospheric Sources of Metal Pollution and Effects on Vegetation. Heavy Metal Tolerance in Plants: Evolutionary Aspects (pp. 75–92). Florida: CRC Press.

    Google Scholar 

  • Soriano, A., Pallares, S., Pardo, F., Vicente, A. B., Sanfeliu, T., & Bech, J. (2012). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. Journal of Geochemical Exploration, 113, 36–44.

    Article  CAS  Google Scholar 

  • Srinivas, C. H., Piska Ravi Shankar, Venkateshwar, C., Satyanarayana Rao, M. S., & Ravider Reddy, R. (2000). Studies on ground water quality of Hyderabad. Pollution Research, 19(2), 285–289.

    CAS  Google Scholar 

  • Stihi, C., Bancuta, A., Popescu, I. V., Virgolici, M., Cimpoca, V., Gugiu, M., & Vlaicu, G. (2006). Air pollution studies using PIXE and ICP methods. Journal of Physics: Conference Series, 41, 565.

    CAS  Google Scholar 

  • Suciu, I., Cosma, C., Todica, M., Bolboaca, S. D., & Jantschi, L. (2008). Analysis of soil heavy metal pollution and pattern in Central Transylvania. International Journal of Molecular Sciences, 9, 434–453.

    Article  CAS  Google Scholar 

  • Tsuji, L. J. S., & Karagatzides, J. D. (2001). Chronic Lead Exposure, Body Condition, and Testis Mass in Wild Mallard Ducks. Journal Bulletin of Environmental Contamination and Toxicology 67(4), 489–495.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. (2000). Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil:state-of-thepractice. EPA/542. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC, USA.

  • Verma, C., Madan, S., & Hussain, A. (2016). Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi. India Civil & Environmental Engineering, 3, 1179243.

    Google Scholar 

  • Walsh, L. M., Sumner, M. E., & Keeney, R. (1977). Occurrence and distribution of arsenic in soils and plants. Environmental Health Perspectives, 19, 67–71.

    Article  CAS  Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shaob, H., Chu, L., & Ruan, C. (2009). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 22.

  • Zhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417–418, 45–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anbazhagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh kumar, K., Anbazhagan, V. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India. Environ Monit Assess 190, 519 (2018). https://doi.org/10.1007/s10661-018-6899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6899-5

Keywords

Navigation