Skip to main content

Advertisement

Log in

The effects of gypsum and mulch applications on reclamation parameters and physical properties of an alkali soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Alkali soils have undesirable properties for crop production. However, these problematic areas can be reclaimed and regained for cultivation. Mulch materials have been used in the past to decrease salinity damage in saline soils. But information about using mulch materials for alkali soil reclamation is rare. The aim of this study was to determine the combined effects of different levels of gypsum applied with straw or pumice mulch materials on the reclamation of an alkali soil. Results obtained from soil extracts during the leaching water cycles showed that gypsum and mulch materials caused significant differences in sodium adsorption ratio (SAR) and electrical conductivity (EC) values. Major reclamation parameters of soil samples were also determined after the addition of 140 cm of leaching water. The exchangeable sodium percentage (ESP) significantly decreased from 18.43 in the initial soil to as low as 2.31 in 0–15 cm soil depth samples and 10.53 at 15–30 cm (P < 0.05). The various treatments were related to significant decreases in SAR, EC, and lime content in reclaimed soils. The amount of water stable aggregates (WSA) increased significantly after reclamation. Although hydraulic conductivity values also increased, the increase was not statistically significant. The fastest water flow rate was observed in the 100% gypsum requirement (GR) and straw mulch treatment. In contrast, the slowest water flow rate was found in the 50% GR and unmulched treatment, and the differences in means were significant. Overall, the 100% GR and straw mulch treatment was most effective in decreasing soil alkalinity, improving soil structure, and reducing reclamation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrol, I. P., Yadav, J.S.P. & Massoud, F.I. (1988). Salt affected soils and their management. FAO Soils Bulletin, No: 39, 143 p.

  • Anonymous (1954). Diagnosis and improvement of saline and alkali soils. U.S. Salinity Laboratory Staff, Agricultural Hanbook, No. 60.

  • Anonymous (2004). SPSS Inc., SPSS® 13.0 Base user’s guide, Prentice Hall.

  • Armstrong, A. S. B., & Tanton, T. W. (1992). Gypsum applications to aggregated saline-sodic clay topsoil. European Journal of Soil Science, 43(2), 249–260.

    Article  CAS  Google Scholar 

  • Aydin, G. (2011). Use of waste pyrite from mineral processing plants in soil remediation. Ph.D. thesis. The Graduate School of Natural and Applied Sciences of Middle East Technical Universty.

  • Baran, A., Cayci, G. & Sozudogru-Ok, S. (1998). The effect of beer factory sludge on some chemical and physical properties of clay loam soil. Int. Sym on Arid Region Soils. Menemen- İzmir- Turkey, 21-24, September, 179–183.

  • Bennett, J. M. L., Cattle, S. R., & Singh, B. (2015a). The efficacy of lime, gypsum and their combination to ameliorate sodicity in in irrigated cropping soils in the Lachlan Valley of New South Wales. Arid Land Research and Management, 29, 17–40.

    Article  CAS  Google Scholar 

  • Bennett, J. M. L., Cattle, S. R., Singh, B., & Quilty, J. R. (2015b). Influence of gypsum enhanced chicken-manure-and-wheat-straw compost on amelioration of an irrigated sodic brown vertisol—laboratory experiment. Arid Land Research and Management, 29(4), 415–431.

    Article  Google Scholar 

  • Berglund, R., Svensson, B., & Gertsson, U. (2006). Impact of plastic mulch and poultry manure on plant establishment in organic strawberry production. Journal of Plant Nutrition, 29(1), 103–112.

    Article  CAS  Google Scholar 

  • Bezborodov, G. A., Shadmanov, D. K., Mirhashimov, R. T., Yuldashev, T., Qureshi, A. S., Noble, A. D., & Qadir, M. (2010). Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agri. Ecosyst. Environ., 138, 95–102.

    Article  Google Scholar 

  • Bharambe, P. R., Rodge, R. P., Awasarmal, B. C., & Ambegoankar, P. R. (1990). Effects of soil amendments on filtration rate of alkali soil under sorghum-wheat rotation. Journal of Maharastra Agricultural Universities, 15(1), 96–97.

    Google Scholar 

  • Blake, G.R. & Hartge, K.H. (1986). Bulk density. Methods of soil analysis, part 1, Soil Sci. Soc. Am., 363–376, Madison, WI, USA.

  • Bouyoucus, G. L. (1951). A recalibration of the hydrometer for making mechanical analysis of soils. Agronomy Journal, 43, 434–438.

    Article  Google Scholar 

  • Bu, Y. S., Shao, H. L., & Wang, J. C. (2002). Effects of different mulch materials on corn seeding growth and soil nutrients’ contents and distributions. J. Soil Water Cons., 16(3), 40–42.

    Google Scholar 

  • Carrow, R.N. & Ducan, R.R. (1998). Salt-affected turfgrass sites: assessment and management. Ann Arbor Press, Chelsea, Michigan, 978–1–57504-091-2.

  • Cass, A., & Sumner, M. E. (1982). Soil pore structural stability and irrigation water quality; empirical sodium stability model. Soil Science Society of America Journal, 46, 503–507.

    Article  CAS  Google Scholar 

  • Chen, C.H., Xu, X.C., Sadakata, M., Wu, L.G., Wang, S.J., Li, Y.J., Li, Y. (2007). Use of the flue gas desulfurization byproduct from thermal power plants and facilities and a method for alkali soil amelioration, US patent US8007560.

  • Clark, R. B., & Baligar, V. C. (2003). Growth of forages legumes and grasses in acidic soil amended with flue gas desulfurization products. Commun. Soil. Sci. Plant, 34(1–2), 157–180.

    Article  CAS  Google Scholar 

  • Diaz, F., Jiménez, C. C., & Tejedor, M. (2005). Influence of the thickness and grain size of tephera mulch on soil water evaporation. Agricultural Water Management, 74, 47–55.

    Article  Google Scholar 

  • Dong, H., Li, W., Tang, W., & Zhang, D. (2009). Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Research, 111, 269–275.

    Article  Google Scholar 

  • Dursun, S.A. (2017). Reclamation of salt-sodium-boron soils and mathematical modelling. Ph.D. thesis. The Graduate School of Natural and Applied Science of Selcuk University.

  • Ghosh, S., Lockwood, P., Hulugalle, N., Daniel, H., Kristiansen, P., & Dodd, K. (2010). Changes in properties of sodic Australian Vertisols with application of organic waste products. Soil Fertility and Plant Nutrition, 74, 153–160.

    CAS  Google Scholar 

  • Hanay, A., Buyuksonmez, F., Kızıloglu, F. M., & Canbolat, M. Y. (2004). Reclamation of saline-sodic soils with gypsum and MSW compost. Compost Science and Utilization, 12(2), 175–179.

    Article  Google Scholar 

  • Ilyas, M., Qureshi, R.H. & Qadir, M. (1997). Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technology, 10, 247–260.

  • Kahlon, M. S., Lal, R., & Varughese, M. A. (2013). Twenty two years of tillage and mulching impacts on physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research, 126, 151–158.

    Article  Google Scholar 

  • Kemper, W.D. (1965). Aggregate stability. Methods of soil analysis. Part I, Black. C.A., Editör-in-Chief, Agronomy monograph, American Society of Agronomy, Inc., Madison, Wis., USA, 9; 511–519.

  • Keren, R., & O’Connor, G. A. (1982). Gypsum dissolution and sodic soil reclamation as affected by water flow velocity. Soil Science Society of America Journal, 46, 726–732.

    Article  CAS  Google Scholar 

  • Keren, R. & S. Miyamoto. (2011). Reclamation of saline, sodic and boron affected soils. Agricultural Salinity Assessment and Management. Wallender and Taji (Eds.) 2nd Edition. American Society of Civil Engineers. Reston Virginia. 655–682.

  • Klute, A. & Dirksen, C. (1986). Hydraulic conductivity and diffusivity; laboratory methods. In Methods of soil analysis, A. Klute (ed.), Part I, Physical and mineralogical methods (Second edition), ASA and SSSA Agronomy Monograph no 9, Madison, WI, USA. p; 687–732.

  • Kovda, V.A. (1967). International source book on irrigation and drainage of arid lands in relation to salinity and alkalinity, FAO/UNESCO.

  • Lee, J., Seo, D., Ro, H., & Yun, S. (2016). Yield response of Chinese cabbage to compost, gypsum, and phosphate treatments under the saline-sodic soil conditions of reclaimed tidal land., 3. Korean Journal of Horticultural Science Technology, 34(4), 587–595.

    CAS  Google Scholar 

  • Li, X. Y. (2003). Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena, 52(2), 105–127.

    Article  Google Scholar 

  • Li-ping, L., Xiao-hua, L., Hong-bo, S., Zhao-Pu, L., Ya, T., Quan-suo, Z., & Jun-qin, Z. (2015). Ameliorants improve saline–alkaline soils on a large scale in northern Jiangsu Province, China. Ecological Engineering, 81, 328–334.

    Article  Google Scholar 

  • Makoi, J. H. R., & Ndakidemi, P. A. (2007). Reclamation of sodic soil soils in northern Tanzania, using locally available organic and inorganic resources. African Journal of Biotechnology, 6(16), 1926–1931.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2 (2nd ed., pp. 539–579). Madison: ASA.

    Google Scholar 

  • Nelson, R.E. (1982). Carbonate and gypsum. In: Miller, R.H., Keeney, D.R. (Eds.), Methods of soil analysis, American Society of Agronomy, Madison, 181–197.

  • Qadir, M., Ghafoor, A., & Murtaza, G. (2001). Use of saline–sodic waters through phytoremediation of calcareous saline–sodic soils. Agricultural Water Management, 50, 197–210. https://doi.org/10.1016/S0378-3774(01)00101-9.

    Article  Google Scholar 

  • Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2006). Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degradation & Development, 17, 661–676.

    Article  Google Scholar 

  • Sadegh-Zadeh, F., Seh-Bardan, B. J., Samsuri, A. W., Mohammadi, A., Chorom, M., & Yazdani, G. A. (2009). Saline soil reclamation by means of layered mulch. Arid Land Research and Management, 23(2), 127–136.

    Article  CAS  Google Scholar 

  • Sahin, U., Oztas, T., & Anapali, O. (2003). Effects of consecutive applications of gypsum in equal, increasing, and decreasing quantities on soil hydraulic conductivity of a saline-sodic soil. Journal of Plant Nutrition and Soil Science, 166, 621–624.

    Article  CAS  Google Scholar 

  • Shainberg, I., Sumner, M. E., Miller, W. P., Farina, M. P. W., Paran, M. A., & Few, M. A. (1989). Use of gypsum on soils: a review. Advances in Soil Science, 1, 1–111.

    Google Scholar 

  • So, H. B., & Aylmore, L. A. G. (1993). How do sodic soils behave? The effects of sodicity on soil physical behaviour. Australian Journal of Soil Research, 31, 761–777.

    Article  Google Scholar 

  • Sonmez, B., Agar, A., Bahceci, I. & Mavi, A. (1996). Türkiye Çorak Islahı Rehberi Köy Hizmetleri Genel Müdürlüğü, APK Dairesi Başkanlığı, Toprak ve Su Araştırma Şube Müdürlüğü Yayınları Yayın No: 93 Ankara.

  • Suarez, D. L. (2001). Sodic soil reclamation: modelling and field study. Australian Journal of Soil Research, 39, 1225–1246.

    Article  CAS  Google Scholar 

  • Szabolcs, I. (1989) Salt-affected soils. CRC Press, Boca Raton, Florida, 274.

  • Tas, I. & Ozturk, A. (2011). Karaman - Ayrancı tuzlu alkali topraklarının ıslahında jips kullanımı. KSÜ Doğa Bil. Derg., 14(1).

  • Tejedor, M., Jimenez, C. C., & Diaz, F. (2003). Use of volcanic mulch to rehabilitate saline-sodic soils. Soil Science Society of America Journal, 67, 1856–1861.

    Article  CAS  Google Scholar 

  • Tejedor, M., Jiménez, C. C., & Diaz, F. (2002). Soil moisture regime changes in tephra-mulched soils: implications for soil taxonomy. Soil Science Society of America Journal, 66, 202–206.

    Article  CAS  Google Scholar 

  • Tozsin, G., Arol, A. I., & Cayci, G. (2014). Use of waste pyrite as an alternative to gypsum for alkaline soil amelioration. International Journal of Mining, Reclamation and Environment, 29(3), 169–177.

    Article  CAS  Google Scholar 

  • Wang, J., Chen, Q., Li, Y., Zhuo, Y. Q., & Xu, L. Z. (2016). Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation and Recycling, 3249, 11.

    Google Scholar 

  • Wang, J. M., Yang, P. L., Zhang, J. G., & Shi, Y. (2005). Salinity effect on sunflower at seedling stage during improving sodic soil reclaimed with by-product from flue gas desulphurization (BFGD). Trans. CSAE., 21(9), 33–37.

    Google Scholar 

  • Wang, R. S., Kang, Y. H., Wan, S. Q., Hu, W., Liu, S. P., Jiang, S. F., & Liu, S. H. (2012). Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agricultural Water Management, 110, 109–117.

    Article  Google Scholar 

  • Wang, W. J., He, H. S., Zu, Y. G., Guan, Y., Liu, Z. G., Zhang, Z. H., Xu, H. Y., & Yu, X. Y. (2011). Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: comparison with other agents and determination of the mechanism. Plant and Soil, 339, 177–191.

    Article  CAS  Google Scholar 

  • Yu, H., Yang, P., Lin, H., & He, R. X. S. (2014). Effects of sodic soil reclamation using flue gas desulphurization gypsum on soil pore characteristics, bulk density, and saturated hydraulic conductivity. Soil Science Society of America Journal, 78, 1201.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hu, H., Tian, F., Hu, H., Yao, X., & Zhong, R. (2014). Soil salt distribution under mulched drip irrigation in an arid area of northwestern China. Journal of Arid Environments, 104, 23–33.

    Article  Google Scholar 

  • Zhao, Y., Pang, H., Wang, J., Huo, L., & Li, Y. (2014). Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research, 161, 6–25.

    Google Scholar 

  • Zia, M. H., Saifullah, S. M., Ghafoor, A., & Murtaza, G. (2007). Effectiveness of sulphuric acid and gypsum for the reclamation of a calcareous saline sodic soil under four crop rotations. Journal of Agronomy & Crop Science, 193, 262–269.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Scientific Research Projects Coordinator (BAP) of Ankara University (Project No: 14L0447002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Cayci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, C., Cayci, G. The effects of gypsum and mulch applications on reclamation parameters and physical properties of an alkali soil. Environ Monit Assess 190, 347 (2018). https://doi.org/10.1007/s10661-018-6669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6669-4

Keywords

Navigation