Skip to main content

Advertisement

Log in

Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Real-time, continuous, in situ water quality sensors were deployed on a fourth-order Iowa (U.S.) stream draining an agricultural watershed to evaluate key in-stream processes affecting concentrations of nitrate during a 24-day late summer (Aug–Sep) period. Overall, nitrate-nitrogen (NO3-N) concentrations declined 0.11 mg L−1 km−1, or about 1.9% km−1 and 35% in total across 18 km. We also calculated stream metabolic rates using in situ dissolved oxygen data and determined stream biotic N demand to be 108–117 mg m−2 day−1. From this, we estimate that 11% of the NO3-N concentration decline measured between two in-situ sensors separated by 2 km was a result of biotic NO3-N demand, while groundwater NO3-N data and estimates of groundwater flow contributions indicate that dilution was responsible for 53%. Because the concentration decline extends linearly across the entire 18 km of stream length, these processes seem consistent throughout the basin downstream of the most upstream sensor site. The nitrate-dissolved oxygen relationship between the two sites separated by 2 km, calculations of biotic NO3-N demand, and diurnal variations in NO3-N concentration all indicate that denitrification by anaerobes is removing less NO3-N than that assimilated by aquatic organisms unable to fix nitrogen for their life processes, and thus the large majority of the NO3-N entering this stream is not retained or removed, but rather transported downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CR:

Community respiration

GPP:

Gross primary production

NP:

Net production

NO3-N:

Nitrate-nitrogen

References

  • Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2000). Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403(6771), 758–761.

    Article  CAS  Google Scholar 

  • Amado, A. A., Schilling, K. E., Jones, C. S., Thomas, N., & Weber, L. J. (2017). Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environmental Monitoring and Assessment, 189(9), 426.

    Article  Google Scholar 

  • Anderson P.F. (1996) GIS research to digitize maps of Iowa 1832–1859 vegetation from general land office township plat maps. Available via http://www.public.iastate.edu/∼fridolph/dnrglo.html. Cited 8 December 2016.

  • Anderson J., Huggins D.G. (2003) Production calculator, version 1.5 operations manual. In: Report No 131. Kansas Biological Survey. Central Plains Center for Bioassessment. University of Kansas. Available via http://cpcb.ku.edu/publications/. Cited 18 May 2017.

  • Baker, J. L., Campbell, K. L., Johnson, H. P., & Hanway, J. J. (1975). Nitrate, phosphorus, and sulfate in subsurface drainage water. Journal of Environmental Quality, 4(3), 406–412.

    Article  CAS  Google Scholar 

  • Bende-Michl, U., Verburg, K., & Cresswell, H. P. (2013). High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environmental Monitoring and Assessment, 185(11), 9191–9219.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S., Likens, G. E., Hall Jr., R. O., Buso, D. C., Fisher, S. G., Burton, T. M., Meyer, J. L., McDowell, W. H., Mayer, M. S., Bowden, W. B., & Findlay, S. E. (2005). Can't see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience, 55(3), 219–230.

    Article  Google Scholar 

  • Bieroza, M. Z., Heathwaite, A. L., Mullinger, N. J., & Keenan, P. O. (2014). Understanding nutrient biogeochemistry in agricultural catchments: the challenge of appropriate monitoring frequencies. Environmental Science: Processes & Impacts, 16(7), 1676–1691.

    CAS  Google Scholar 

  • Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—a literature review. Critical Reviews in Environmental Science and Technology, 37(5), 381–487.

    Article  CAS  Google Scholar 

  • Böhlke, J. K., & Denver, J. M. (1995). Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, 31(9), 2319–2339.

    Article  Google Scholar 

  • Bott, T. L. (1996). Primary productivity and community respiration. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology. San Diego: Academic Press.

    Google Scholar 

  • Cohen, M.J., Heffernan, J.B., Albertin, A. and Martin, J.B. (2012). Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. Journal of Geophysical Research: Biogeosciences, 117(G1).

  • David, M. B., & Gentry, L. E. (2000). Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. Journal of Environmental Quality, 29(2), 494–508.

    Article  CAS  Google Scholar 

  • Davis, C. A., Ward, A. S., Burgin, A. J., Loecke, T. D., Riveros-Iregui, D. A., Schnoebelen, D. J., Just, C. L., Thomas, S. A., Weber, L. J., & St Clair, M. A. (2014). Antecedent moisture controls on stream nitrate flux in an agricultural watershed. Journal of Environmental Quality, 43(4), 1494–1503.

    Article  Google Scholar 

  • Dideriksen R.O., LaVan M.R., Norwood K.K., Steckly S.R., Steele J.E. (2007) Soil survey of Iowa County, Part 1. USDA-NRCS. Available via http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/iowa/IA095/0/Iowa_IA_Part_1.pdf. Cited 10 May 2017.

  • Duff, J. H., Tesoriero, A. J., Richardson, W. B., Strauss, E. A., & Munn, M. D. (2008). Whole-stream response to nitrate loading in three streams draining agricultural landscapes. Journal of Environmental Quality, 37(3), 1133–1144.

    Article  CAS  Google Scholar 

  • Ferber, D. (2001). Keeping the stygian waters at bay. Science, 291, 968–973.

    Article  CAS  Google Scholar 

  • Freeze R.A., Cherry J.A. (1979) Groundwater. Prentice—Hall Inc, Englewood Cliffs New Jersey, p 604.

  • Grace M.R., Imberger S.J., (2006) Stream metabolism: performing & interpreting measurements. In: Water Studies Centre Monash University, Murray Darling Basin Commission and New South Wales Department of Environment and Climate Change, p 204.

  • Guerrero MG. (1985) Assimilatory nitrate reduction. InTechniques in Bioproductivity and Photosynthesis (Second Edition) (pp. 165–172).

  • Heffernan, J. B., & Cohen, M. J. (2010). Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnology and Oceanography, 55(2), 677–688.

    Article  CAS  Google Scholar 

  • Hensley, R. T., Cohen, M. J., & Korhnak, L. V. (2015). Hydraulic effects on nitrogen removal in a tidal spring-fed river. Water Resources Research, 51(3), 1443–1456.

    Article  Google Scholar 

  • Highland J.D., Dideriksen R.I. (1967) Soil survey of Iowa County. In: USDA-NRCS. Available via http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/iowa/iowaIA1967/Iowa_IA.pdf. Cited 11 May 2017.

  • Hubbard, L., Kolpin, D. W., Kalkhoff, S. J., & Robertson, D. M. (2011). Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa. Journal of Environmental Quality, 40(1), 166–175.

    Article  CAS  Google Scholar 

  • Ikenberry, C. D., Soupir, M. L., Schilling, K. E., Jones, C. S., & Seeman, A. (2014). Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins. Journal of Environmental Quality, 43(6), 2024–2033.

    Article  CAS  Google Scholar 

  • Isenhart, T. M., & Crumpton, W. G. (1989). Transformation and loss of nitrate in an agricultural stream. Journal of Freshwater Ecology, 5(2), 123-129.

  • Jones, C. S., Kim, S.-W., & Schilling, K. E. (2017a). Use of continuous monitoring to assess stream nitrate flux and transformation patterns. Environmental Monitoring and Assessment, 189(1), 35.

    Article  Google Scholar 

  • Jones, C. S., Wang, B., Schilling, K. E., & Chan, K.-S. (2017b). Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis. Journal of Hydrology, 549, 581–591.

    Article  CAS  Google Scholar 

  • Justić, D., Rabalais, N. N., & Turner, R. E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1), 41–46.

    Article  Google Scholar 

  • Knowles R. (1990) Acetylene inhibition technique: development, advantages, and potential problems. In: Denitrification in soil and sediment, Springer, US, pp. 151–166.

  • Kunz, J. V., Hensley, R., Brase, L., Borchardt, D., & Rode, M. (2016). Direct measurements of in-stream nitrate uptake with automated high frequency sensors. InEGU General Assembly Conference Abstracts, 18, 4598.

    Google Scholar 

  • Leming, T. D., & Stuntz, W. E. (1984). Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing. Nature, 310(5973), 136–138.

    Article  CAS  Google Scholar 

  • Lewis Jr., W. M. (2002). Yield of nitrogen from minimally disturbed watersheds of the United States. In The nitrogen cycle at regional to global scales (pp. 375–385). Netherlands: Springer.

    Chapter  Google Scholar 

  • Loperfido J.V., Just C.L., Papanicolaou, A.N., Schnoor J.L. (2010) In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa. Water Resources Research 46(6).

  • Melching, C. S., & Flores, H. E. (1999). Reaeration equations derived from US geological survey database. Journal of Environmental Engineering, 125(5), 407–414.

    Article  CAS  Google Scholar 

  • Mesonet, I.E., 2008. Iowa State University Department of Agronomy. Precipitation and other climate information available at http://mesonet.agron.iastate.edu/climodat/index.phtml.

  • Miller, M. P., Tesoriero, A. J., Capel, P. D., Pellerin, B. A., Hyer, K. E., & Burns, D. A. (2016). Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data. Water Resources Research, 52(1), 330–347.

    Article  CAS  Google Scholar 

  • Minitab, I.N.C., 2000. MINITAB statistical software. Minitab Release, 13.

  • Mulholland, P. J. (2004). The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker branch watershed. Biogeochemistry, 70(3), 403–426.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., & Dodds, W. K. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202–205.

    Article  CAS  Google Scholar 

  • Newbold J.D. (1992) Cycles and spirals of nutrients. In: The rivers handbook, 1, pp379–408.

  • Newbold, J. D., Elwood, J. W., O'Neill, R. V., & Van Winkle, W. (1981). Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 38(7), 860–863.

    Article  Google Scholar 

  • Newbold, J. D., O'Neill, R. V., Elwood, J. W., & Van Winkle, W. (1982). Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. The American Naturalist, 120(5), 628–652.

    Article  Google Scholar 

  • Nuzzo, V. A. (1986). Extent and status of Midwest oak savanna: presettlement and 1985. Natural Areas Journal, 6–36.

  • O’Brien, J.M., & Dodds,W. K. (2010). Saturation of NO3 uptake in prairie streams as a function of acute and chronic N exposure. Journal of the North American Benthological Society, 29(2), 627–635.

  • O’Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., & Eichmiller, J. (2007). The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations. Biogeochemistry, 84(1), 31–49.

    Article  Google Scholar 

  • Odum, H. T. (1956). Primary production in flowing waters. Limnology and Oceanography, 1(2), 102–117.

    Article  Google Scholar 

  • Papanicolaou, A. N., Elhakeem, M., Wilson, C., Burras, C. L., & Oneal, B. (2008). Observations of soils at the hillslope scale in the Clear Creek watershed in Iowa, USA. Soil Horizons, 49(4), 83–86.

    Article  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Martí, E., Bowden, W. B., Valett, H. M., Hershey, A. E., & McDowell, W. H. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514), 86–90.

    Article  CAS  Google Scholar 

  • Prior, J. C. (1991). Landforms of Iowa. University of Iowa Press.

  • Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. Ambio: A Journal of the Human Environment, 31(2), 102–112.

    Article  Google Scholar 

  • Rayburn, A. P., & Schulte, L. A. (2009). Landscape change in an agricultural watershed in the US Midwest. Landscape and Urban Planning, 93(2), 132–141.

    Article  Google Scholar 

  • Reay, D. S., Nedwell, D. B., Priddle, J., & Ellis-Evans, J. C. (1999). Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Applied and Environmental Microbiology, 65(6), 2577–2584.

    CAS  Google Scholar 

  • Renaud, M. L. (1986). Hypoxia in Louisiana coastal waters during 1983: implications for fisheries. Fishery Bulletin, 84, 19–26.

    Google Scholar 

  • Rolston, D. E. (1981). Nitrous oxide and nitrogen gas production in fertilizer loss. In C. C. Delwiche (Ed.), Denitrification, nitrification, and atmospheric nitrous oxide. New York: John Wiley & Sons.

    Google Scholar 

  • Royer, T. V., Tank, J. L., & David, M. B. (2004). Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environmental Quality, 33(4), 1296–1304.

    Article  CAS  Google Scholar 

  • Rozemeijer, J. C., Van der Velde, Y., Van Geer, F. C., De Rooij, G. H., Torfs, P. J., & Broers, H. P. (2010). Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events. Environmental Science & Technology, 44(16), 6305–6312.

    Article  CAS  Google Scholar 

  • Schilling, K. E., & Jacobson, P. (2014). Effectiveness of natural riparian buffers to reduce subsurface nutrient losses to incised streams. Catena, 114, 140–148.

    Article  CAS  Google Scholar 

  • Schilling, K. E., Zhang, Y. K., & Drobney, P. (2004). Water table fluctuations near an incised stream, Walnut Creek, Iowa. Journal of Hydrology, 286(1), 236–248.

    Article  Google Scholar 

  • Schilling, K. E., Li, Z., & Zhang, Y. K. (2006). Groundwater–surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. Journal of Hydrology, 327(1), 140–150.

    Article  CAS  Google Scholar 

  • Schilling, K. E., Jones, C. S., Seeman, A., Bader, E., & Filipiak, J. (2012). Nitrate-nitrogen patterns in engineered catchments in the upper Mississippi River basin. Ecological Engineering, 42, 1–9.

    Article  Google Scholar 

  • Schilling, K., Streeter, M., Hutchinson, K., Wilson, C., Abban, B., Wacha, K., & Papanicolaou, A. (2015). Effects of land cover on streamflow variability in a small Iowa watershed: assessing future vulnerabilities. American Journal of Environmental Sciences, 11(4), 186–198.

    Article  Google Scholar 

  • Schultz, R. C., Isenhart, T. M., Simpkins, W. W., & Colletti, J. P. (2004). Riparian forest buffers in agroecosystems–lessons learned from the Bear Creek watershed, central Iowa, USA. Agroforestry Systems, 61, 35–50.

    Google Scholar 

  • Schwob H.H. (1964) Water resources of the English River, Old Mans Creek, and Clear Creek basins in Iowa, No. 64–141. US Geological Survey.

  • Tank, J. L., & Dodds, W. K. (2003). Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology, 48(6), 1031–1049.

    Article  CAS  Google Scholar 

  • Thompson, R. (1992). Prairies, forests, and wetlands: The restoration of natural landscape communities in Iowa. Iowa City, IA: University of Iowa Press.

    Google Scholar 

  • Tiedje, J. M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic. microorganisms, 717, 179–244.

    Google Scholar 

  • U.S. Geological Survey (2017) National Water Information System: Web Interface. Available via http://waterdata.usgs.gov/ia/nwis/uv/?site_no=05454220&PARAmeter_cd=00065,00060. Cited 10 May 2017.

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750.

    Google Scholar 

  • Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., & Joly, E. (2012). Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences, 16(11), 4323–4342.

    Article  Google Scholar 

  • Webster, J. R., & Patten, B. C. (1979). Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs, 49(1), 51–72.

    Article  CAS  Google Scholar 

  • Webster, J. R., Mulholland, P. J., Tank, J. L., Valett, H. M., Dodds, W. K., Peterson, B. J., Bowden, W. B., Dahm, C. N., Findlay, S., Gregory, S. V., & Grimm, N. B. (2003). Factors affecting ammonium uptake in streams—an inter-biome perspective. Freshwater Biology, 48(8), 1329–1352.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (2000). Limnological analysis (3rd ed.). New York: The University of Chicago Press.

    Book  Google Scholar 

  • Zhao, Y., & Quigg, A. (2014). Nutrient limitation in Northern Gulf of Mexico (NGOM): phytoplankton communities and photosynthesis respond to nutrient pulse. Plos One, 9(2), e88732.

    Article  Google Scholar 

Download references

Acknowledgments

This publication was prepared by the authors with funds from the Iowa Nutrient Research Center. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Iowa Nutrient Research Center or Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Jones.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C.S., Kim, Sw., Wilton, T.F. et al. Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors. Environ Monit Assess 190, 226 (2018). https://doi.org/10.1007/s10661-018-6599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6599-1

Keywords

Navigation